This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of supremum of subset of CH on a singleton. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chsupsn | ⊢ ( 𝐴 ∈ Cℋ → ( ∨ℋ ‘ { 𝐴 } ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snssi | ⊢ ( 𝐴 ∈ Cℋ → { 𝐴 } ⊆ Cℋ ) | |
| 2 | chsupval2 | ⊢ ( { 𝐴 } ⊆ Cℋ → ( ∨ℋ ‘ { 𝐴 } ) = ∩ { 𝑥 ∈ Cℋ ∣ ∪ { 𝐴 } ⊆ 𝑥 } ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐴 ∈ Cℋ → ( ∨ℋ ‘ { 𝐴 } ) = ∩ { 𝑥 ∈ Cℋ ∣ ∪ { 𝐴 } ⊆ 𝑥 } ) |
| 4 | unisng | ⊢ ( 𝐴 ∈ Cℋ → ∪ { 𝐴 } = 𝐴 ) | |
| 5 | eqimss | ⊢ ( ∪ { 𝐴 } = 𝐴 → ∪ { 𝐴 } ⊆ 𝐴 ) | |
| 6 | 4 5 | syl | ⊢ ( 𝐴 ∈ Cℋ → ∪ { 𝐴 } ⊆ 𝐴 ) |
| 7 | 6 | ancli | ⊢ ( 𝐴 ∈ Cℋ → ( 𝐴 ∈ Cℋ ∧ ∪ { 𝐴 } ⊆ 𝐴 ) ) |
| 8 | sseq2 | ⊢ ( 𝑥 = 𝐴 → ( ∪ { 𝐴 } ⊆ 𝑥 ↔ ∪ { 𝐴 } ⊆ 𝐴 ) ) | |
| 9 | 8 | elrab | ⊢ ( 𝐴 ∈ { 𝑥 ∈ Cℋ ∣ ∪ { 𝐴 } ⊆ 𝑥 } ↔ ( 𝐴 ∈ Cℋ ∧ ∪ { 𝐴 } ⊆ 𝐴 ) ) |
| 10 | 7 9 | sylibr | ⊢ ( 𝐴 ∈ Cℋ → 𝐴 ∈ { 𝑥 ∈ Cℋ ∣ ∪ { 𝐴 } ⊆ 𝑥 } ) |
| 11 | intss1 | ⊢ ( 𝐴 ∈ { 𝑥 ∈ Cℋ ∣ ∪ { 𝐴 } ⊆ 𝑥 } → ∩ { 𝑥 ∈ Cℋ ∣ ∪ { 𝐴 } ⊆ 𝑥 } ⊆ 𝐴 ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐴 ∈ Cℋ → ∩ { 𝑥 ∈ Cℋ ∣ ∪ { 𝐴 } ⊆ 𝑥 } ⊆ 𝐴 ) |
| 13 | ssintub | ⊢ ∪ { 𝐴 } ⊆ ∩ { 𝑥 ∈ Cℋ ∣ ∪ { 𝐴 } ⊆ 𝑥 } | |
| 14 | 4 13 | eqsstrrdi | ⊢ ( 𝐴 ∈ Cℋ → 𝐴 ⊆ ∩ { 𝑥 ∈ Cℋ ∣ ∪ { 𝐴 } ⊆ 𝑥 } ) |
| 15 | 12 14 | eqssd | ⊢ ( 𝐴 ∈ Cℋ → ∩ { 𝑥 ∈ Cℋ ∣ ∪ { 𝐴 } ⊆ 𝑥 } = 𝐴 ) |
| 16 | 3 15 | eqtrd | ⊢ ( 𝐴 ∈ Cℋ → ( ∨ℋ ‘ { 𝐴 } ) = 𝐴 ) |