This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subspace is the supremum of all smaller subspaces. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chsupid | |- ( A e. CH -> ( \/H ` { x e. CH | x C_ A } ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrab2 | |- { x e. CH | x C_ A } C_ CH |
|
| 2 | chsupval2 | |- ( { x e. CH | x C_ A } C_ CH -> ( \/H ` { x e. CH | x C_ A } ) = |^| { y e. CH | U. { x e. CH | x C_ A } C_ y } ) |
|
| 3 | 1 2 | ax-mp | |- ( \/H ` { x e. CH | x C_ A } ) = |^| { y e. CH | U. { x e. CH | x C_ A } C_ y } |
| 4 | unimax | |- ( A e. CH -> U. { x e. CH | x C_ A } = A ) |
|
| 5 | 4 | sseq1d | |- ( A e. CH -> ( U. { x e. CH | x C_ A } C_ y <-> A C_ y ) ) |
| 6 | 5 | rabbidv | |- ( A e. CH -> { y e. CH | U. { x e. CH | x C_ A } C_ y } = { y e. CH | A C_ y } ) |
| 7 | 6 | inteqd | |- ( A e. CH -> |^| { y e. CH | U. { x e. CH | x C_ A } C_ y } = |^| { y e. CH | A C_ y } ) |
| 8 | intmin | |- ( A e. CH -> |^| { y e. CH | A C_ y } = A ) |
|
| 9 | 7 8 | eqtrd | |- ( A e. CH -> |^| { y e. CH | U. { x e. CH | x C_ A } C_ y } = A ) |
| 10 | 3 9 | eqtrid | |- ( A e. CH -> ( \/H ` { x e. CH | x C_ A } ) = A ) |