This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZRHom homomorphism is the unique ring homomorphism from ZZ . (Contributed by Mario Carneiro, 15-Jun-2015) (Revised by AV, 12-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zrhval.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
| Assertion | zrhrhmb | ⊢ ( 𝑅 ∈ Ring → ( 𝐹 ∈ ( ℤring RingHom 𝑅 ) ↔ 𝐹 = 𝐿 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrhval.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) | |
| 3 | eqid | ⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) | |
| 4 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 5 | 2 3 4 | mulgrhm2 | ⊢ ( 𝑅 ∈ Ring → ( ℤring RingHom 𝑅 ) = { ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) } ) |
| 6 | 1 2 4 | zrhval2 | ⊢ ( 𝑅 ∈ Ring → 𝐿 = ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
| 7 | 6 | sneqd | ⊢ ( 𝑅 ∈ Ring → { 𝐿 } = { ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) } ) |
| 8 | 5 7 | eqtr4d | ⊢ ( 𝑅 ∈ Ring → ( ℤring RingHom 𝑅 ) = { 𝐿 } ) |
| 9 | 8 | eleq2d | ⊢ ( 𝑅 ∈ Ring → ( 𝐹 ∈ ( ℤring RingHom 𝑅 ) ↔ 𝐹 ∈ { 𝐿 } ) ) |
| 10 | 1 | fvexi | ⊢ 𝐿 ∈ V |
| 11 | 10 | elsn2 | ⊢ ( 𝐹 ∈ { 𝐿 } ↔ 𝐹 = 𝐿 ) |
| 12 | 9 11 | bitrdi | ⊢ ( 𝑅 ∈ Ring → ( 𝐹 ∈ ( ℤring RingHom 𝑅 ) ↔ 𝐹 = 𝐿 ) ) |