This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The canonical ZZ ring homomorphism applied to a ring's characteristic is zero. (Contributed by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chrcl.c | ⊢ 𝐶 = ( chr ‘ 𝑅 ) | |
| chrid.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | ||
| chrid.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | chrid | ⊢ ( 𝑅 ∈ Ring → ( 𝐿 ‘ 𝐶 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chrcl.c | ⊢ 𝐶 = ( chr ‘ 𝑅 ) | |
| 2 | chrid.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
| 3 | chrid.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | 1 | chrcl | ⊢ ( 𝑅 ∈ Ring → 𝐶 ∈ ℕ0 ) |
| 5 | 4 | nn0zd | ⊢ ( 𝑅 ∈ Ring → 𝐶 ∈ ℤ ) |
| 6 | eqid | ⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) | |
| 7 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 8 | 2 6 7 | zrhmulg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝐶 ∈ ℤ ) → ( 𝐿 ‘ 𝐶 ) = ( 𝐶 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 9 | 5 8 | mpdan | ⊢ ( 𝑅 ∈ Ring → ( 𝐿 ‘ 𝐶 ) = ( 𝐶 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 10 | eqid | ⊢ ( od ‘ 𝑅 ) = ( od ‘ 𝑅 ) | |
| 11 | 10 7 1 | chrval | ⊢ ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = 𝐶 |
| 12 | 11 | oveq1i | ⊢ ( ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝐶 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 13 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 14 | 13 7 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 15 | 13 10 6 3 | odid | ⊢ ( ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) → ( ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 0 ) |
| 16 | 14 15 | syl | ⊢ ( 𝑅 ∈ Ring → ( ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 0 ) |
| 17 | 12 16 | eqtr3id | ⊢ ( 𝑅 ∈ Ring → ( 𝐶 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 0 ) |
| 18 | 9 17 | eqtrd | ⊢ ( 𝑅 ∈ Ring → ( 𝐿 ‘ 𝐶 ) = 0 ) |