This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two integers are congruent relative to the ring characteristic, their images in the ring are the same. (Contributed by Mario Carneiro, 24-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | chrcl.c | ⊢ 𝐶 = ( chr ‘ 𝑅 ) | |
| chrid.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | ||
| chrid.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | ||
| Assertion | chrcong | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐶 ∥ ( 𝑀 − 𝑁 ) ↔ ( 𝐿 ‘ 𝑀 ) = ( 𝐿 ‘ 𝑁 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chrcl.c | ⊢ 𝐶 = ( chr ‘ 𝑅 ) | |
| 2 | chrid.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) | |
| 3 | chrid.z | ⊢ 0 = ( 0g ‘ 𝑅 ) | |
| 4 | eqid | ⊢ ( od ‘ 𝑅 ) = ( od ‘ 𝑅 ) | |
| 5 | eqid | ⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) | |
| 6 | 4 5 1 | chrval | ⊢ ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) = 𝐶 |
| 7 | 6 | breq1i | ⊢ ( ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∥ ( 𝑀 − 𝑁 ) ↔ 𝐶 ∥ ( 𝑀 − 𝑁 ) ) |
| 8 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑅 ∈ Grp ) |
| 10 | eqid | ⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) | |
| 11 | 10 5 | ringidcl | ⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
| 13 | simp2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑀 ∈ ℤ ) | |
| 14 | simp3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → 𝑁 ∈ ℤ ) | |
| 15 | eqid | ⊢ ( .g ‘ 𝑅 ) = ( .g ‘ 𝑅 ) | |
| 16 | 10 4 15 3 | odcong | ⊢ ( ( 𝑅 ∈ Grp ∧ ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) → ( ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∥ ( 𝑀 − 𝑁 ) ↔ ( 𝑀 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑁 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
| 17 | 9 12 13 14 16 | syl112anc | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( ( od ‘ 𝑅 ) ‘ ( 1r ‘ 𝑅 ) ) ∥ ( 𝑀 − 𝑁 ) ↔ ( 𝑀 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑁 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
| 18 | 7 17 | bitr3id | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐶 ∥ ( 𝑀 − 𝑁 ) ↔ ( 𝑀 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑁 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
| 19 | 2 15 5 | zrhmulg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ) → ( 𝐿 ‘ 𝑀 ) = ( 𝑀 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 20 | 19 | 3adant3 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐿 ‘ 𝑀 ) = ( 𝑀 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 21 | 2 15 5 | zrhmulg | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑁 ∈ ℤ ) → ( 𝐿 ‘ 𝑁 ) = ( 𝑁 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 22 | 21 | 3adant2 | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐿 ‘ 𝑁 ) = ( 𝑁 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 23 | 20 22 | eqeq12d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝐿 ‘ 𝑀 ) = ( 𝐿 ‘ 𝑁 ) ↔ ( 𝑀 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = ( 𝑁 ( .g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
| 24 | 18 23 | bitr4d | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝐶 ∥ ( 𝑀 − 𝑁 ) ↔ ( 𝐿 ‘ 𝑀 ) = ( 𝐿 ‘ 𝑁 ) ) ) |