This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The orthocomplement of the unit subspace is the zero subspace. Does not require Axiom of Choice. (Contributed by NM, 24-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | choc1 | ⊢ ( ⊥ ‘ ℋ ) = 0ℋ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | helsh | ⊢ ℋ ∈ Sℋ | |
| 2 | shocel | ⊢ ( ℋ ∈ Sℋ → ( 𝑥 ∈ ( ⊥ ‘ ℋ ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( 𝑥 ∈ ( ⊥ ‘ ℋ ) ↔ ( 𝑥 ∈ ℋ ∧ ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) ) |
| 4 | 3 | simprbi | ⊢ ( 𝑥 ∈ ( ⊥ ‘ ℋ ) → ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = 0 ) |
| 5 | shocss | ⊢ ( ℋ ∈ Sℋ → ( ⊥ ‘ ℋ ) ⊆ ℋ ) | |
| 6 | 1 5 | ax-mp | ⊢ ( ⊥ ‘ ℋ ) ⊆ ℋ |
| 7 | 6 | sseli | ⊢ ( 𝑥 ∈ ( ⊥ ‘ ℋ ) → 𝑥 ∈ ℋ ) |
| 8 | hial0 | ⊢ ( 𝑥 ∈ ℋ → ( ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = 0 ↔ 𝑥 = 0ℎ ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝑥 ∈ ( ⊥ ‘ ℋ ) → ( ∀ 𝑦 ∈ ℋ ( 𝑥 ·ih 𝑦 ) = 0 ↔ 𝑥 = 0ℎ ) ) |
| 10 | 4 9 | mpbid | ⊢ ( 𝑥 ∈ ( ⊥ ‘ ℋ ) → 𝑥 = 0ℎ ) |
| 11 | elch0 | ⊢ ( 𝑥 ∈ 0ℋ ↔ 𝑥 = 0ℎ ) | |
| 12 | 10 11 | sylibr | ⊢ ( 𝑥 ∈ ( ⊥ ‘ ℋ ) → 𝑥 ∈ 0ℋ ) |
| 13 | 12 | ssriv | ⊢ ( ⊥ ‘ ℋ ) ⊆ 0ℋ |
| 14 | h0elsh | ⊢ 0ℋ ∈ Sℋ | |
| 15 | shococss | ⊢ ( 0ℋ ∈ Sℋ → 0ℋ ⊆ ( ⊥ ‘ ( ⊥ ‘ 0ℋ ) ) ) | |
| 16 | 14 15 | ax-mp | ⊢ 0ℋ ⊆ ( ⊥ ‘ ( ⊥ ‘ 0ℋ ) ) |
| 17 | choc0 | ⊢ ( ⊥ ‘ 0ℋ ) = ℋ | |
| 18 | 17 | fveq2i | ⊢ ( ⊥ ‘ ( ⊥ ‘ 0ℋ ) ) = ( ⊥ ‘ ℋ ) |
| 19 | 16 18 | sseqtri | ⊢ 0ℋ ⊆ ( ⊥ ‘ ℋ ) |
| 20 | 13 19 | eqssi | ⊢ ( ⊥ ‘ ℋ ) = 0ℋ |