This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy filter base is also a Cauchy filter base on any coarser uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfiluweak | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trust | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ) → ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ) | |
| 2 | iscfilu | ⊢ ( ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) → ( 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝐴 ) ∧ ∀ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑢 ) ) ) | |
| 3 | 2 | biimpa | ⊢ ( ( ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∈ ( UnifOn ‘ 𝐴 ) ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → ( 𝐹 ∈ ( fBas ‘ 𝐴 ) ∧ ∀ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑢 ) ) |
| 4 | 1 3 | stoic3 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → ( 𝐹 ∈ ( fBas ‘ 𝐴 ) ∧ ∀ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑢 ) ) |
| 5 | 4 | simpld | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝐹 ∈ ( fBas ‘ 𝐴 ) ) |
| 6 | fbsspw | ⊢ ( 𝐹 ∈ ( fBas ‘ 𝐴 ) → 𝐹 ⊆ 𝒫 𝐴 ) | |
| 7 | 5 6 | syl | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝐹 ⊆ 𝒫 𝐴 ) |
| 8 | simp2 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝐴 ⊆ 𝑋 ) | |
| 9 | 8 | sspwd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝒫 𝐴 ⊆ 𝒫 𝑋 ) |
| 10 | 7 9 | sstrd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝐹 ⊆ 𝒫 𝑋 ) |
| 11 | simp1 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) | |
| 12 | 11 | elfvexd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝑋 ∈ V ) |
| 13 | fbasweak | ⊢ ( ( 𝐹 ∈ ( fBas ‘ 𝐴 ) ∧ 𝐹 ⊆ 𝒫 𝑋 ∧ 𝑋 ∈ V ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) | |
| 14 | 5 10 12 13 | syl3anc | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝐹 ∈ ( fBas ‘ 𝑋 ) ) |
| 15 | sseq2 | ⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( ( 𝑎 × 𝑎 ) ⊆ 𝑢 ↔ ( 𝑎 × 𝑎 ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) | |
| 16 | 15 | rexbidv | ⊢ ( 𝑢 = ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑢 ↔ ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) ) |
| 17 | 4 | simprd | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → ∀ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑢 ) |
| 18 | 17 | adantr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → ∀ 𝑢 ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑢 ) |
| 19 | 11 | adantr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ) |
| 20 | 12 | adantr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → 𝑋 ∈ V ) |
| 21 | 8 | adantr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → 𝐴 ⊆ 𝑋 ) |
| 22 | 20 21 | ssexd | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → 𝐴 ∈ V ) |
| 23 | 22 22 | xpexd | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝐴 × 𝐴 ) ∈ V ) |
| 24 | simpr | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → 𝑣 ∈ 𝑈 ) | |
| 25 | elrestr | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ ( 𝐴 × 𝐴 ) ∈ V ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) | |
| 26 | 19 23 24 25 | syl3anc | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ∈ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) |
| 27 | 16 18 26 | rspcdva | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ) |
| 28 | inss1 | ⊢ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 | |
| 29 | sstr | ⊢ ( ( ( 𝑎 × 𝑎 ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ∧ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) ⊆ 𝑣 ) → ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) | |
| 30 | 28 29 | mpan2 | ⊢ ( ( 𝑎 × 𝑎 ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 31 | 30 | reximi | ⊢ ( ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ ( 𝑣 ∩ ( 𝐴 × 𝐴 ) ) → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 32 | 27 31 | syl | ⊢ ( ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) ∧ 𝑣 ∈ 𝑈 ) → ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 33 | 32 | ralrimiva | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) |
| 34 | iscfilu | ⊢ ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) → ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) | |
| 35 | 34 | 3ad2ant1 | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → ( 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ↔ ( 𝐹 ∈ ( fBas ‘ 𝑋 ) ∧ ∀ 𝑣 ∈ 𝑈 ∃ 𝑎 ∈ 𝐹 ( 𝑎 × 𝑎 ) ⊆ 𝑣 ) ) ) |
| 36 | 14 33 35 | mpbir2and | ⊢ ( ( 𝑈 ∈ ( UnifOn ‘ 𝑋 ) ∧ 𝐴 ⊆ 𝑋 ∧ 𝐹 ∈ ( CauFilu ‘ ( 𝑈 ↾t ( 𝐴 × 𝐴 ) ) ) ) → 𝐹 ∈ ( CauFilu ‘ 𝑈 ) ) |