This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy filter base is also a Cauchy filter base on any coarser uniform structure. (Contributed by Thierry Arnoux, 24-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfiluweak | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) -> F e. ( CauFilU ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trust | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X ) -> ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) ) |
|
| 2 | iscfilu | |- ( ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) -> ( F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) <-> ( F e. ( fBas ` A ) /\ A. u e. ( U |`t ( A X. A ) ) E. a e. F ( a X. a ) C_ u ) ) ) |
|
| 3 | 2 | biimpa | |- ( ( ( U |`t ( A X. A ) ) e. ( UnifOn ` A ) /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) -> ( F e. ( fBas ` A ) /\ A. u e. ( U |`t ( A X. A ) ) E. a e. F ( a X. a ) C_ u ) ) |
| 4 | 1 3 | stoic3 | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) -> ( F e. ( fBas ` A ) /\ A. u e. ( U |`t ( A X. A ) ) E. a e. F ( a X. a ) C_ u ) ) |
| 5 | 4 | simpld | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) -> F e. ( fBas ` A ) ) |
| 6 | fbsspw | |- ( F e. ( fBas ` A ) -> F C_ ~P A ) |
|
| 7 | 5 6 | syl | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) -> F C_ ~P A ) |
| 8 | simp2 | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) -> A C_ X ) |
|
| 9 | 8 | sspwd | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) -> ~P A C_ ~P X ) |
| 10 | 7 9 | sstrd | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) -> F C_ ~P X ) |
| 11 | simp1 | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) -> U e. ( UnifOn ` X ) ) |
|
| 12 | 11 | elfvexd | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) -> X e. _V ) |
| 13 | fbasweak | |- ( ( F e. ( fBas ` A ) /\ F C_ ~P X /\ X e. _V ) -> F e. ( fBas ` X ) ) |
|
| 14 | 5 10 12 13 | syl3anc | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) -> F e. ( fBas ` X ) ) |
| 15 | sseq2 | |- ( u = ( v i^i ( A X. A ) ) -> ( ( a X. a ) C_ u <-> ( a X. a ) C_ ( v i^i ( A X. A ) ) ) ) |
|
| 16 | 15 | rexbidv | |- ( u = ( v i^i ( A X. A ) ) -> ( E. a e. F ( a X. a ) C_ u <-> E. a e. F ( a X. a ) C_ ( v i^i ( A X. A ) ) ) ) |
| 17 | 4 | simprd | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) -> A. u e. ( U |`t ( A X. A ) ) E. a e. F ( a X. a ) C_ u ) |
| 18 | 17 | adantr | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) /\ v e. U ) -> A. u e. ( U |`t ( A X. A ) ) E. a e. F ( a X. a ) C_ u ) |
| 19 | 11 | adantr | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) /\ v e. U ) -> U e. ( UnifOn ` X ) ) |
| 20 | 12 | adantr | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) /\ v e. U ) -> X e. _V ) |
| 21 | 8 | adantr | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) /\ v e. U ) -> A C_ X ) |
| 22 | 20 21 | ssexd | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) /\ v e. U ) -> A e. _V ) |
| 23 | 22 22 | xpexd | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) /\ v e. U ) -> ( A X. A ) e. _V ) |
| 24 | simpr | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) /\ v e. U ) -> v e. U ) |
|
| 25 | elrestr | |- ( ( U e. ( UnifOn ` X ) /\ ( A X. A ) e. _V /\ v e. U ) -> ( v i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) ) |
|
| 26 | 19 23 24 25 | syl3anc | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) /\ v e. U ) -> ( v i^i ( A X. A ) ) e. ( U |`t ( A X. A ) ) ) |
| 27 | 16 18 26 | rspcdva | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) /\ v e. U ) -> E. a e. F ( a X. a ) C_ ( v i^i ( A X. A ) ) ) |
| 28 | inss1 | |- ( v i^i ( A X. A ) ) C_ v |
|
| 29 | sstr | |- ( ( ( a X. a ) C_ ( v i^i ( A X. A ) ) /\ ( v i^i ( A X. A ) ) C_ v ) -> ( a X. a ) C_ v ) |
|
| 30 | 28 29 | mpan2 | |- ( ( a X. a ) C_ ( v i^i ( A X. A ) ) -> ( a X. a ) C_ v ) |
| 31 | 30 | reximi | |- ( E. a e. F ( a X. a ) C_ ( v i^i ( A X. A ) ) -> E. a e. F ( a X. a ) C_ v ) |
| 32 | 27 31 | syl | |- ( ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) /\ v e. U ) -> E. a e. F ( a X. a ) C_ v ) |
| 33 | 32 | ralrimiva | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) -> A. v e. U E. a e. F ( a X. a ) C_ v ) |
| 34 | iscfilu | |- ( U e. ( UnifOn ` X ) -> ( F e. ( CauFilU ` U ) <-> ( F e. ( fBas ` X ) /\ A. v e. U E. a e. F ( a X. a ) C_ v ) ) ) |
|
| 35 | 34 | 3ad2ant1 | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) -> ( F e. ( CauFilU ` U ) <-> ( F e. ( fBas ` X ) /\ A. v e. U E. a e. F ( a X. a ) C_ v ) ) ) |
| 36 | 14 33 35 | mpbir2and | |- ( ( U e. ( UnifOn ` X ) /\ A C_ X /\ F e. ( CauFilU ` ( U |`t ( A X. A ) ) ) ) -> F e. ( CauFilU ` U ) ) |