This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cofinality function is idempotent. (Contributed by Mario Carneiro, 7-Mar-2013) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfidm | ⊢ ( cf ‘ ( cf ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfle | ⊢ ( cf ‘ ( cf ‘ 𝐴 ) ) ⊆ ( cf ‘ 𝐴 ) | |
| 2 | 1 | a1i | ⊢ ( 𝐴 ∈ On → ( cf ‘ ( cf ‘ 𝐴 ) ) ⊆ ( cf ‘ 𝐴 ) ) |
| 3 | cfsmo | ⊢ ( 𝐴 ∈ On → ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( cf ‘ 𝐴 ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) ) | |
| 4 | cfon | ⊢ ( cf ‘ 𝐴 ) ∈ On | |
| 5 | cfcoflem | ⊢ ( ( 𝐴 ∈ On ∧ ( cf ‘ 𝐴 ) ∈ On ) → ( ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( cf ‘ 𝐴 ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( cf ‘ 𝐴 ) ⊆ ( cf ‘ ( cf ‘ 𝐴 ) ) ) ) | |
| 6 | 4 5 | mpan2 | ⊢ ( 𝐴 ∈ On → ( ∃ 𝑓 ( 𝑓 : ( cf ‘ 𝐴 ) ⟶ 𝐴 ∧ Smo 𝑓 ∧ ∀ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ ( cf ‘ 𝐴 ) 𝑥 ⊆ ( 𝑓 ‘ 𝑦 ) ) → ( cf ‘ 𝐴 ) ⊆ ( cf ‘ ( cf ‘ 𝐴 ) ) ) ) |
| 7 | 3 6 | mpd | ⊢ ( 𝐴 ∈ On → ( cf ‘ 𝐴 ) ⊆ ( cf ‘ ( cf ‘ 𝐴 ) ) ) |
| 8 | 2 7 | eqssd | ⊢ ( 𝐴 ∈ On → ( cf ‘ ( cf ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) ) |
| 9 | cf0 | ⊢ ( cf ‘ ∅ ) = ∅ | |
| 10 | cff | ⊢ cf : On ⟶ On | |
| 11 | 10 | fdmi | ⊢ dom cf = On |
| 12 | 11 | eleq2i | ⊢ ( 𝐴 ∈ dom cf ↔ 𝐴 ∈ On ) |
| 13 | ndmfv | ⊢ ( ¬ 𝐴 ∈ dom cf → ( cf ‘ 𝐴 ) = ∅ ) | |
| 14 | 12 13 | sylnbir | ⊢ ( ¬ 𝐴 ∈ On → ( cf ‘ 𝐴 ) = ∅ ) |
| 15 | 14 | fveq2d | ⊢ ( ¬ 𝐴 ∈ On → ( cf ‘ ( cf ‘ 𝐴 ) ) = ( cf ‘ ∅ ) ) |
| 16 | 9 15 14 | 3eqtr4a | ⊢ ( ¬ 𝐴 ∈ On → ( cf ‘ ( cf ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) ) |
| 17 | 8 16 | pm2.61i | ⊢ ( cf ‘ ( cf ‘ 𝐴 ) ) = ( cf ‘ 𝐴 ) |