This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cofinality function is idempotent. (Contributed by Mario Carneiro, 7-Mar-2013) (Revised by Mario Carneiro, 15-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cfidm | |- ( cf ` ( cf ` A ) ) = ( cf ` A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cfle | |- ( cf ` ( cf ` A ) ) C_ ( cf ` A ) |
|
| 2 | 1 | a1i | |- ( A e. On -> ( cf ` ( cf ` A ) ) C_ ( cf ` A ) ) |
| 3 | cfsmo | |- ( A e. On -> E. f ( f : ( cf ` A ) --> A /\ Smo f /\ A. x e. A E. y e. ( cf ` A ) x C_ ( f ` y ) ) ) |
|
| 4 | cfon | |- ( cf ` A ) e. On |
|
| 5 | cfcoflem | |- ( ( A e. On /\ ( cf ` A ) e. On ) -> ( E. f ( f : ( cf ` A ) --> A /\ Smo f /\ A. x e. A E. y e. ( cf ` A ) x C_ ( f ` y ) ) -> ( cf ` A ) C_ ( cf ` ( cf ` A ) ) ) ) |
|
| 6 | 4 5 | mpan2 | |- ( A e. On -> ( E. f ( f : ( cf ` A ) --> A /\ Smo f /\ A. x e. A E. y e. ( cf ` A ) x C_ ( f ` y ) ) -> ( cf ` A ) C_ ( cf ` ( cf ` A ) ) ) ) |
| 7 | 3 6 | mpd | |- ( A e. On -> ( cf ` A ) C_ ( cf ` ( cf ` A ) ) ) |
| 8 | 2 7 | eqssd | |- ( A e. On -> ( cf ` ( cf ` A ) ) = ( cf ` A ) ) |
| 9 | cf0 | |- ( cf ` (/) ) = (/) |
|
| 10 | cff | |- cf : On --> On |
|
| 11 | 10 | fdmi | |- dom cf = On |
| 12 | 11 | eleq2i | |- ( A e. dom cf <-> A e. On ) |
| 13 | ndmfv | |- ( -. A e. dom cf -> ( cf ` A ) = (/) ) |
|
| 14 | 12 13 | sylnbir | |- ( -. A e. On -> ( cf ` A ) = (/) ) |
| 15 | 14 | fveq2d | |- ( -. A e. On -> ( cf ` ( cf ` A ) ) = ( cf ` (/) ) ) |
| 16 | 9 15 14 | 3eqtr4a | |- ( -. A e. On -> ( cf ` ( cf ` A ) ) = ( cf ` A ) ) |
| 17 | 8 16 | pm2.61i | |- ( cf ` ( cf ` A ) ) = ( cf ` A ) |