This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | cdivcncf.1 | |- F = ( x e. ( CC \ { 0 } ) |-> ( A / x ) ) |
|
| Assertion | cdivcncf | |- ( A e. CC -> F e. ( ( CC \ { 0 } ) -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdivcncf.1 | |- F = ( x e. ( CC \ { 0 } ) |-> ( A / x ) ) |
|
| 2 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 3 | 2 | cnfldtopon | |- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
| 4 | 3 | a1i | |- ( A e. CC -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
| 5 | difss | |- ( CC \ { 0 } ) C_ CC |
|
| 6 | resttopon | |- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( CC \ { 0 } ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) e. ( TopOn ` ( CC \ { 0 } ) ) ) |
|
| 7 | 4 5 6 | sylancl | |- ( A e. CC -> ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) e. ( TopOn ` ( CC \ { 0 } ) ) ) |
| 8 | id | |- ( A e. CC -> A e. CC ) |
|
| 9 | 7 4 8 | cnmptc | |- ( A e. CC -> ( x e. ( CC \ { 0 } ) |-> A ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 10 | 7 | cnmptid | |- ( A e. CC -> ( x e. ( CC \ { 0 } ) |-> x ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) Cn ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) ) |
| 11 | eqid | |- ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) |
|
| 12 | 2 11 | divcn | |- / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) |
| 13 | 12 | a1i | |- ( A e. CC -> / e. ( ( ( TopOpen ` CCfld ) tX ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 14 | 7 9 10 13 | cnmpt12f | |- ( A e. CC -> ( x e. ( CC \ { 0 } ) |-> ( A / x ) ) e. ( ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 15 | ssid | |- CC C_ CC |
|
| 16 | 3 | toponrestid | |- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
| 17 | 2 11 16 | cncfcn | |- ( ( ( CC \ { 0 } ) C_ CC /\ CC C_ CC ) -> ( ( CC \ { 0 } ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 18 | 5 15 17 | mp2an | |- ( ( CC \ { 0 } ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( CC \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) |
| 19 | 14 1 18 | 3eltr4g | |- ( A e. CC -> F e. ( ( CC \ { 0 } ) -cn-> CC ) ) |