This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first symbol of the right (nonempty) half of a concatenated word. (Contributed by AV, 23-Apr-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ccatval21sw | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐵 ‘ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lencl | ⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 2 | 1 | nn0zd | ⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 3 | lennncl | ⊢ ( ( 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ 𝐵 ) ∈ ℕ ) | |
| 4 | simpl | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ♯ ‘ 𝐴 ) ∈ ℤ ) | |
| 5 | nnz | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ → ( ♯ ‘ 𝐵 ) ∈ ℤ ) | |
| 6 | zaddcl | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℤ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) | |
| 7 | 5 6 | sylan2 | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ) |
| 8 | nngt0 | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ → 0 < ( ♯ ‘ 𝐵 ) ) | |
| 9 | 8 | adantl | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → 0 < ( ♯ ‘ 𝐵 ) ) |
| 10 | nnre | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ → ( ♯ ‘ 𝐵 ) ∈ ℝ ) | |
| 11 | zre | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ℤ → ( ♯ ‘ 𝐴 ) ∈ ℝ ) | |
| 12 | ltaddpos | ⊢ ( ( ( ♯ ‘ 𝐵 ) ∈ ℝ ∧ ( ♯ ‘ 𝐴 ) ∈ ℝ ) → ( 0 < ( ♯ ‘ 𝐵 ) ↔ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) | |
| 13 | 10 11 12 | syl2anr | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( 0 < ( ♯ ‘ 𝐵 ) ↔ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 14 | 9 13 | mpbid | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 15 | 4 7 14 | 3jca | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ ) → ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 16 | 2 3 15 | syl2an | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ ( 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) ) → ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 17 | 16 | 3impb | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 18 | fzolb | ⊢ ( ( ♯ ‘ 𝐴 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) < ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) | |
| 19 | 17 18 | sylibr | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ♯ ‘ 𝐴 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) |
| 20 | ccatval2 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝐴 ) ∈ ( ( ♯ ‘ 𝐴 ) ..^ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐵 ‘ ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐴 ) ) ) ) | |
| 21 | 19 20 | syld3an3 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐵 ‘ ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐴 ) ) ) ) |
| 22 | 1 | nn0cnd | ⊢ ( 𝐴 ∈ Word 𝑉 → ( ♯ ‘ 𝐴 ) ∈ ℂ ) |
| 23 | 22 | subidd | ⊢ ( 𝐴 ∈ Word 𝑉 → ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐴 ) ) = 0 ) |
| 24 | 23 | fveq2d | ⊢ ( 𝐴 ∈ Word 𝑉 → ( 𝐵 ‘ ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐴 ) ) ) = ( 𝐵 ‘ 0 ) ) |
| 25 | 24 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( 𝐵 ‘ ( ( ♯ ‘ 𝐴 ) − ( ♯ ‘ 𝐴 ) ) ) = ( 𝐵 ‘ 0 ) ) |
| 26 | 21 25 | eqtrd | ⊢ ( ( 𝐴 ∈ Word 𝑉 ∧ 𝐵 ∈ Word 𝑉 ∧ 𝐵 ≠ ∅ ) → ( ( 𝐴 ++ 𝐵 ) ‘ ( ♯ ‘ 𝐴 ) ) = ( 𝐵 ‘ 0 ) ) |