This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Abutting half-open integer ranges are disjoint. (Contributed by Stefan O'Rear, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzodisj | ⊢ ( ( 𝐴 ..^ 𝐵 ) ∩ ( 𝐵 ..^ 𝐶 ) ) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj1 | ⊢ ( ( ( 𝐴 ..^ 𝐵 ) ∩ ( 𝐵 ..^ 𝐶 ) ) = ∅ ↔ ∀ 𝑥 ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → ¬ 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) ) ) | |
| 2 | elfzolt2 | ⊢ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → 𝑥 < 𝐵 ) | |
| 3 | elfzoelz | ⊢ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → 𝑥 ∈ ℤ ) | |
| 4 | 3 | zred | ⊢ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → 𝑥 ∈ ℝ ) |
| 5 | elfzoel2 | ⊢ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐵 ∈ ℤ ) | |
| 6 | 5 | zred | ⊢ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → 𝐵 ∈ ℝ ) |
| 7 | 4 6 | ltnled | ⊢ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → ( 𝑥 < 𝐵 ↔ ¬ 𝐵 ≤ 𝑥 ) ) |
| 8 | 2 7 | mpbid | ⊢ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → ¬ 𝐵 ≤ 𝑥 ) |
| 9 | elfzole1 | ⊢ ( 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) → 𝐵 ≤ 𝑥 ) | |
| 10 | 8 9 | nsyl | ⊢ ( 𝑥 ∈ ( 𝐴 ..^ 𝐵 ) → ¬ 𝑥 ∈ ( 𝐵 ..^ 𝐶 ) ) |
| 11 | 1 10 | mpgbir | ⊢ ( ( 𝐴 ..^ 𝐵 ) ∩ ( 𝐵 ..^ 𝐶 ) ) = ∅ |