This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a concatenated word is a superset of the domain of the first word. (Contributed by Thierry Arnoux, 19-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ccatdmss.1 | ⊢ ( 𝜑 → 𝐴 ∈ Word 𝑆 ) | |
| ccatdmss.2 | ⊢ ( 𝜑 → 𝐵 ∈ Word 𝑆 ) | ||
| Assertion | ccatdmss | ⊢ ( 𝜑 → dom 𝐴 ⊆ dom ( 𝐴 ++ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatdmss.1 | ⊢ ( 𝜑 → 𝐴 ∈ Word 𝑆 ) | |
| 2 | ccatdmss.2 | ⊢ ( 𝜑 → 𝐵 ∈ Word 𝑆 ) | |
| 3 | lencl | ⊢ ( 𝐴 ∈ Word 𝑆 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℕ0 ) |
| 5 | 4 | nn0zd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℤ ) |
| 6 | ccatcl | ⊢ ( ( 𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆 ) → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑆 ) | |
| 7 | 1 2 6 | syl2anc | ⊢ ( 𝜑 → ( 𝐴 ++ 𝐵 ) ∈ Word 𝑆 ) |
| 8 | lencl | ⊢ ( ( 𝐴 ++ 𝐵 ) ∈ Word 𝑆 → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ∈ ℕ0 ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ∈ ℕ0 ) |
| 10 | 9 | nn0zd | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ∈ ℤ ) |
| 11 | 4 | nn0red | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ∈ ℝ ) |
| 12 | lencl | ⊢ ( 𝐵 ∈ Word 𝑆 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 13 | 2 12 | syl | ⊢ ( 𝜑 → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 14 | nn0addge1 | ⊢ ( ( ( ♯ ‘ 𝐴 ) ∈ ℝ ∧ ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) → ( ♯ ‘ 𝐴 ) ≤ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) | |
| 15 | 11 13 14 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ≤ ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 16 | ccatlen | ⊢ ( ( 𝐴 ∈ Word 𝑆 ∧ 𝐵 ∈ Word 𝑆 ) → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) | |
| 17 | 1 2 16 | syl2anc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) + ( ♯ ‘ 𝐵 ) ) ) |
| 18 | 15 17 | breqtrrd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) |
| 19 | eluz2 | ⊢ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐴 ) ) ↔ ( ( ♯ ‘ 𝐴 ) ∈ ℤ ∧ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝐴 ) ≤ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) | |
| 20 | 5 10 18 19 | syl3anbrc | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐴 ) ) ) |
| 21 | fzoss2 | ⊢ ( ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ∈ ( ℤ≥ ‘ ( ♯ ‘ 𝐴 ) ) → ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⊆ ( 0 ..^ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) | |
| 22 | 20 21 | syl | ⊢ ( 𝜑 → ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⊆ ( 0 ..^ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) |
| 23 | eqidd | ⊢ ( 𝜑 → ( ♯ ‘ 𝐴 ) = ( ♯ ‘ 𝐴 ) ) | |
| 24 | 23 1 | wrdfd | ⊢ ( 𝜑 → 𝐴 : ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ⟶ 𝑆 ) |
| 25 | 24 | fdmd | ⊢ ( 𝜑 → dom 𝐴 = ( 0 ..^ ( ♯ ‘ 𝐴 ) ) ) |
| 26 | eqidd | ⊢ ( 𝜑 → ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) = ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) | |
| 27 | 26 7 | wrdfd | ⊢ ( 𝜑 → ( 𝐴 ++ 𝐵 ) : ( 0 ..^ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ⟶ 𝑆 ) |
| 28 | 27 | fdmd | ⊢ ( 𝜑 → dom ( 𝐴 ++ 𝐵 ) = ( 0 ..^ ( ♯ ‘ ( 𝐴 ++ 𝐵 ) ) ) ) |
| 29 | 22 25 28 | 3sstr4d | ⊢ ( 𝜑 → dom 𝐴 ⊆ dom ( 𝐴 ++ 𝐵 ) ) |