This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of a concatenated word is a superset of the domain of the first word. (Contributed by Thierry Arnoux, 19-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ccatdmss.1 | |- ( ph -> A e. Word S ) |
|
| ccatdmss.2 | |- ( ph -> B e. Word S ) |
||
| Assertion | ccatdmss | |- ( ph -> dom A C_ dom ( A ++ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ccatdmss.1 | |- ( ph -> A e. Word S ) |
|
| 2 | ccatdmss.2 | |- ( ph -> B e. Word S ) |
|
| 3 | lencl | |- ( A e. Word S -> ( # ` A ) e. NN0 ) |
|
| 4 | 1 3 | syl | |- ( ph -> ( # ` A ) e. NN0 ) |
| 5 | 4 | nn0zd | |- ( ph -> ( # ` A ) e. ZZ ) |
| 6 | ccatcl | |- ( ( A e. Word S /\ B e. Word S ) -> ( A ++ B ) e. Word S ) |
|
| 7 | 1 2 6 | syl2anc | |- ( ph -> ( A ++ B ) e. Word S ) |
| 8 | lencl | |- ( ( A ++ B ) e. Word S -> ( # ` ( A ++ B ) ) e. NN0 ) |
|
| 9 | 7 8 | syl | |- ( ph -> ( # ` ( A ++ B ) ) e. NN0 ) |
| 10 | 9 | nn0zd | |- ( ph -> ( # ` ( A ++ B ) ) e. ZZ ) |
| 11 | 4 | nn0red | |- ( ph -> ( # ` A ) e. RR ) |
| 12 | lencl | |- ( B e. Word S -> ( # ` B ) e. NN0 ) |
|
| 13 | 2 12 | syl | |- ( ph -> ( # ` B ) e. NN0 ) |
| 14 | nn0addge1 | |- ( ( ( # ` A ) e. RR /\ ( # ` B ) e. NN0 ) -> ( # ` A ) <_ ( ( # ` A ) + ( # ` B ) ) ) |
|
| 15 | 11 13 14 | syl2anc | |- ( ph -> ( # ` A ) <_ ( ( # ` A ) + ( # ` B ) ) ) |
| 16 | ccatlen | |- ( ( A e. Word S /\ B e. Word S ) -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
|
| 17 | 1 2 16 | syl2anc | |- ( ph -> ( # ` ( A ++ B ) ) = ( ( # ` A ) + ( # ` B ) ) ) |
| 18 | 15 17 | breqtrrd | |- ( ph -> ( # ` A ) <_ ( # ` ( A ++ B ) ) ) |
| 19 | eluz2 | |- ( ( # ` ( A ++ B ) ) e. ( ZZ>= ` ( # ` A ) ) <-> ( ( # ` A ) e. ZZ /\ ( # ` ( A ++ B ) ) e. ZZ /\ ( # ` A ) <_ ( # ` ( A ++ B ) ) ) ) |
|
| 20 | 5 10 18 19 | syl3anbrc | |- ( ph -> ( # ` ( A ++ B ) ) e. ( ZZ>= ` ( # ` A ) ) ) |
| 21 | fzoss2 | |- ( ( # ` ( A ++ B ) ) e. ( ZZ>= ` ( # ` A ) ) -> ( 0 ..^ ( # ` A ) ) C_ ( 0 ..^ ( # ` ( A ++ B ) ) ) ) |
|
| 22 | 20 21 | syl | |- ( ph -> ( 0 ..^ ( # ` A ) ) C_ ( 0 ..^ ( # ` ( A ++ B ) ) ) ) |
| 23 | eqidd | |- ( ph -> ( # ` A ) = ( # ` A ) ) |
|
| 24 | 23 1 | wrdfd | |- ( ph -> A : ( 0 ..^ ( # ` A ) ) --> S ) |
| 25 | 24 | fdmd | |- ( ph -> dom A = ( 0 ..^ ( # ` A ) ) ) |
| 26 | eqidd | |- ( ph -> ( # ` ( A ++ B ) ) = ( # ` ( A ++ B ) ) ) |
|
| 27 | 26 7 | wrdfd | |- ( ph -> ( A ++ B ) : ( 0 ..^ ( # ` ( A ++ B ) ) ) --> S ) |
| 28 | 27 | fdmd | |- ( ph -> dom ( A ++ B ) = ( 0 ..^ ( # ` ( A ++ B ) ) ) ) |
| 29 | 22 25 28 | 3sstr4d | |- ( ph -> dom A C_ dom ( A ++ B ) ) |