This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A Cauchy sequence of real numbers converges to its limit supremum. The third hypothesis specifies that F is a Cauchy sequence. (Contributed by Mario Carneiro, 7-May-2016) (Revised by AV, 12-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caurcvgr.1 | |- ( ph -> A C_ RR ) |
|
| caurcvgr.2 | |- ( ph -> F : A --> RR ) |
||
| caurcvgr.3 | |- ( ph -> sup ( A , RR* , < ) = +oo ) |
||
| caurcvgr.4 | |- ( ph -> A. x e. RR+ E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
||
| Assertion | caurcvgr | |- ( ph -> F ~~>r ( limsup ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caurcvgr.1 | |- ( ph -> A C_ RR ) |
|
| 2 | caurcvgr.2 | |- ( ph -> F : A --> RR ) |
|
| 3 | caurcvgr.3 | |- ( ph -> sup ( A , RR* , < ) = +oo ) |
|
| 4 | caurcvgr.4 | |- ( ph -> A. x e. RR+ E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
|
| 5 | 1rp | |- 1 e. RR+ |
|
| 6 | 5 | a1i | |- ( ph -> 1 e. RR+ ) |
| 7 | 1 2 3 4 6 | caucvgrlem | |- ( ph -> E. j e. A ( ( limsup ` F ) e. RR /\ A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < ( 3 x. 1 ) ) ) ) |
| 8 | simpl | |- ( ( ( limsup ` F ) e. RR /\ A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < ( 3 x. 1 ) ) ) -> ( limsup ` F ) e. RR ) |
|
| 9 | 8 | rexlimivw | |- ( E. j e. A ( ( limsup ` F ) e. RR /\ A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < ( 3 x. 1 ) ) ) -> ( limsup ` F ) e. RR ) |
| 10 | 7 9 | syl | |- ( ph -> ( limsup ` F ) e. RR ) |
| 11 | 10 | recnd | |- ( ph -> ( limsup ` F ) e. CC ) |
| 12 | 1 | adantr | |- ( ( ph /\ y e. RR+ ) -> A C_ RR ) |
| 13 | 2 | adantr | |- ( ( ph /\ y e. RR+ ) -> F : A --> RR ) |
| 14 | 3 | adantr | |- ( ( ph /\ y e. RR+ ) -> sup ( A , RR* , < ) = +oo ) |
| 15 | 4 | adantr | |- ( ( ph /\ y e. RR+ ) -> A. x e. RR+ E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( F ` j ) ) ) < x ) ) |
| 16 | simpr | |- ( ( ph /\ y e. RR+ ) -> y e. RR+ ) |
|
| 17 | 3rp | |- 3 e. RR+ |
|
| 18 | rpdivcl | |- ( ( y e. RR+ /\ 3 e. RR+ ) -> ( y / 3 ) e. RR+ ) |
|
| 19 | 16 17 18 | sylancl | |- ( ( ph /\ y e. RR+ ) -> ( y / 3 ) e. RR+ ) |
| 20 | 12 13 14 15 19 | caucvgrlem | |- ( ( ph /\ y e. RR+ ) -> E. j e. A ( ( limsup ` F ) e. RR /\ A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < ( 3 x. ( y / 3 ) ) ) ) ) |
| 21 | simpr | |- ( ( ( limsup ` F ) e. RR /\ A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < ( 3 x. ( y / 3 ) ) ) ) -> A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < ( 3 x. ( y / 3 ) ) ) ) |
|
| 22 | 21 | reximi | |- ( E. j e. A ( ( limsup ` F ) e. RR /\ A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < ( 3 x. ( y / 3 ) ) ) ) -> E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < ( 3 x. ( y / 3 ) ) ) ) |
| 23 | 20 22 | syl | |- ( ( ph /\ y e. RR+ ) -> E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < ( 3 x. ( y / 3 ) ) ) ) |
| 24 | ssrexv | |- ( A C_ RR -> ( E. j e. A A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < ( 3 x. ( y / 3 ) ) ) -> E. j e. RR A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < ( 3 x. ( y / 3 ) ) ) ) ) |
|
| 25 | 12 23 24 | sylc | |- ( ( ph /\ y e. RR+ ) -> E. j e. RR A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < ( 3 x. ( y / 3 ) ) ) ) |
| 26 | rpcn | |- ( y e. RR+ -> y e. CC ) |
|
| 27 | 26 | adantl | |- ( ( ph /\ y e. RR+ ) -> y e. CC ) |
| 28 | 3cn | |- 3 e. CC |
|
| 29 | 28 | a1i | |- ( ( ph /\ y e. RR+ ) -> 3 e. CC ) |
| 30 | 3ne0 | |- 3 =/= 0 |
|
| 31 | 30 | a1i | |- ( ( ph /\ y e. RR+ ) -> 3 =/= 0 ) |
| 32 | 27 29 31 | divcan2d | |- ( ( ph /\ y e. RR+ ) -> ( 3 x. ( y / 3 ) ) = y ) |
| 33 | 32 | breq2d | |- ( ( ph /\ y e. RR+ ) -> ( ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < ( 3 x. ( y / 3 ) ) <-> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < y ) ) |
| 34 | 33 | imbi2d | |- ( ( ph /\ y e. RR+ ) -> ( ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < ( 3 x. ( y / 3 ) ) ) <-> ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < y ) ) ) |
| 35 | 34 | rexralbidv | |- ( ( ph /\ y e. RR+ ) -> ( E. j e. RR A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < ( 3 x. ( y / 3 ) ) ) <-> E. j e. RR A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < y ) ) ) |
| 36 | 25 35 | mpbid | |- ( ( ph /\ y e. RR+ ) -> E. j e. RR A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < y ) ) |
| 37 | 36 | ralrimiva | |- ( ph -> A. y e. RR+ E. j e. RR A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < y ) ) |
| 38 | ax-resscn | |- RR C_ CC |
|
| 39 | fss | |- ( ( F : A --> RR /\ RR C_ CC ) -> F : A --> CC ) |
|
| 40 | 2 38 39 | sylancl | |- ( ph -> F : A --> CC ) |
| 41 | eqidd | |- ( ( ph /\ k e. A ) -> ( F ` k ) = ( F ` k ) ) |
|
| 42 | 40 1 41 | rlim | |- ( ph -> ( F ~~>r ( limsup ` F ) <-> ( ( limsup ` F ) e. CC /\ A. y e. RR+ E. j e. RR A. k e. A ( j <_ k -> ( abs ` ( ( F ` k ) - ( limsup ` F ) ) ) < y ) ) ) ) |
| 43 | 11 37 42 | mpbir2and | |- ( ph -> F ~~>r ( limsup ` F ) ) |