This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for caucvgr . (Contributed by NM, 4-Apr-2005) (Proof shortened by Mario Carneiro, 8-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caucvgr.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| caucvgr.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | ||
| caucvgr.3 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | ||
| caucvgr.4 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) | ||
| caucvgrlem2.5 | ⊢ 𝐻 : ℂ ⟶ ℝ | ||
| caucvgrlem2.6 | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) → ( abs ‘ ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) − ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ) | ||
| Assertion | caucvgrlem2 | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝐴 ↦ ( 𝐻 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⇝𝑟 ( ⇝𝑟 ‘ ( 𝐻 ∘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caucvgr.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | caucvgr.2 | ⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ ℂ ) | |
| 3 | caucvgr.3 | ⊢ ( 𝜑 → sup ( 𝐴 , ℝ* , < ) = +∞ ) | |
| 4 | caucvgr.4 | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) ) | |
| 5 | caucvgrlem2.5 | ⊢ 𝐻 : ℂ ⟶ ℝ | |
| 6 | caucvgrlem2.6 | ⊢ ( ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ ∧ ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) → ( abs ‘ ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) − ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ) | |
| 7 | fcompt | ⊢ ( ( 𝐻 : ℂ ⟶ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐻 ∘ 𝐹 ) = ( 𝑛 ∈ 𝐴 ↦ ( 𝐻 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) | |
| 8 | 5 2 7 | sylancr | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) = ( 𝑛 ∈ 𝐴 ↦ ( 𝐻 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ) |
| 9 | fco | ⊢ ( ( 𝐻 : ℂ ⟶ ℝ ∧ 𝐹 : 𝐴 ⟶ ℂ ) → ( 𝐻 ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) | |
| 10 | 5 2 9 | sylancr | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) : 𝐴 ⟶ ℝ ) |
| 11 | 2 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → 𝐹 : 𝐴 ⟶ ℂ ) |
| 12 | simprr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → 𝑘 ∈ 𝐴 ) | |
| 13 | 11 12 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑘 ) ∈ ℂ ) |
| 14 | simprl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → 𝑗 ∈ 𝐴 ) | |
| 15 | 11 14 | ffvelcdmd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝐹 ‘ 𝑗 ) ∈ ℂ ) |
| 16 | 13 15 6 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( abs ‘ ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) − ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 17 | 5 | ffvelcdmi | ⊢ ( ( 𝐹 ‘ 𝑘 ) ∈ ℂ → ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 18 | 13 17 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) ∈ ℝ ) |
| 19 | 5 | ffvelcdmi | ⊢ ( ( 𝐹 ‘ 𝑗 ) ∈ ℂ → ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
| 20 | 15 19 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ∈ ℝ ) |
| 21 | 18 20 | resubcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) − ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 22 | 21 | recnd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) − ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℂ ) |
| 23 | 22 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( abs ‘ ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) − ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ∈ ℝ ) |
| 24 | 13 15 | subcld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ∈ ℂ ) |
| 25 | 24 | abscld | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ) |
| 26 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 27 | 26 | ad2antlr | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → 𝑥 ∈ ℝ ) |
| 28 | lelttr | ⊢ ( ( ( abs ‘ ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) − ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ∈ ℝ ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ∈ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ( abs ‘ ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) − ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ( abs ‘ ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) − ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) < 𝑥 ) ) | |
| 29 | 23 25 27 28 | syl3anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( ( ( abs ‘ ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) − ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ≤ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) ∧ ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ( abs ‘ ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) − ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) < 𝑥 ) ) |
| 30 | 16 29 | mpand | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → ( abs ‘ ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) − ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) < 𝑥 ) ) |
| 31 | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) ) | |
| 32 | 11 12 31 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) ) |
| 33 | fvco3 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ℂ ∧ 𝑗 ∈ 𝐴 ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑗 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) | |
| 34 | 11 14 33 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑗 ) = ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) |
| 35 | 32 34 | oveq12d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) − ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑗 ) ) = ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) − ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) |
| 36 | 35 | fveq2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( abs ‘ ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) − ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑗 ) ) ) = ( abs ‘ ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) − ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) ) |
| 37 | 36 | breq1d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( ( abs ‘ ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) − ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ↔ ( abs ‘ ( ( 𝐻 ‘ ( 𝐹 ‘ 𝑘 ) ) − ( 𝐻 ‘ ( 𝐹 ‘ 𝑗 ) ) ) ) < 𝑥 ) ) |
| 38 | 30 37 | sylibrd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 → ( abs ‘ ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) − ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 39 | 38 | imim2d | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐴 ) ) → ( ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) − ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 40 | 39 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐴 ) → ( ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) − ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 41 | 40 | ralimdva | ⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) ∧ 𝑗 ∈ 𝐴 ) → ( ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) − ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 42 | 41 | reximdva | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ℝ+ ) → ( ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) − ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 43 | 42 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( 𝐹 ‘ 𝑘 ) − ( 𝐹 ‘ 𝑗 ) ) ) < 𝑥 ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) − ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) ) |
| 44 | 4 43 | mpd | ⊢ ( 𝜑 → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ 𝐴 ∀ 𝑘 ∈ 𝐴 ( 𝑗 ≤ 𝑘 → ( abs ‘ ( ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑘 ) − ( ( 𝐻 ∘ 𝐹 ) ‘ 𝑗 ) ) ) < 𝑥 ) ) |
| 45 | 1 10 3 44 | caurcvgr | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ⇝𝑟 ( lim sup ‘ ( 𝐻 ∘ 𝐹 ) ) ) |
| 46 | rlimrel | ⊢ Rel ⇝𝑟 | |
| 47 | 46 | releldmi | ⊢ ( ( 𝐻 ∘ 𝐹 ) ⇝𝑟 ( lim sup ‘ ( 𝐻 ∘ 𝐹 ) ) → ( 𝐻 ∘ 𝐹 ) ∈ dom ⇝𝑟 ) |
| 48 | 45 47 | syl | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ∈ dom ⇝𝑟 ) |
| 49 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 50 | fss | ⊢ ( ( ( 𝐻 ∘ 𝐹 ) : 𝐴 ⟶ ℝ ∧ ℝ ⊆ ℂ ) → ( 𝐻 ∘ 𝐹 ) : 𝐴 ⟶ ℂ ) | |
| 51 | 10 49 50 | sylancl | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) : 𝐴 ⟶ ℂ ) |
| 52 | 51 3 | rlimdm | ⊢ ( 𝜑 → ( ( 𝐻 ∘ 𝐹 ) ∈ dom ⇝𝑟 ↔ ( 𝐻 ∘ 𝐹 ) ⇝𝑟 ( ⇝𝑟 ‘ ( 𝐻 ∘ 𝐹 ) ) ) ) |
| 53 | 48 52 | mpbid | ⊢ ( 𝜑 → ( 𝐻 ∘ 𝐹 ) ⇝𝑟 ( ⇝𝑟 ‘ ( 𝐻 ∘ 𝐹 ) ) ) |
| 54 | 8 53 | eqbrtrrd | ⊢ ( 𝜑 → ( 𝑛 ∈ 𝐴 ↦ ( 𝐻 ‘ ( 𝐹 ‘ 𝑛 ) ) ) ⇝𝑟 ( ⇝𝑟 ‘ ( 𝐻 ∘ 𝐹 ) ) ) |