This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each object in a category has an associated identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cidfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| cidfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| cidfval.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| cidfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| cidfval.i | ⊢ 1 = ( Id ‘ 𝐶 ) | ||
| cidval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | cidval | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( ℩ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cidfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | cidfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | cidfval.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | cidfval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | cidfval.i | ⊢ 1 = ( Id ‘ 𝐶 ) | |
| 6 | cidval.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | 1 2 3 4 5 | cidfval | ⊢ ( 𝜑 → 1 = ( 𝑥 ∈ 𝐵 ↦ ( ℩ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) ) |
| 8 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 𝑥 = 𝑋 ) | |
| 9 | 8 8 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑥 𝐻 𝑥 ) = ( 𝑋 𝐻 𝑋 ) ) |
| 10 | 8 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑦 𝐻 𝑥 ) = ( 𝑦 𝐻 𝑋 ) ) |
| 11 | 8 | opeq2d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 〈 𝑦 , 𝑥 〉 = 〈 𝑦 , 𝑋 〉 ) |
| 12 | 11 8 | oveq12d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) = ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) ) |
| 13 | 12 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) |
| 14 | 13 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ↔ ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) ) |
| 15 | 10 14 | raleqbidv | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) ) |
| 16 | 8 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑥 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑦 ) ) |
| 17 | 8 8 | opeq12d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → 〈 𝑥 , 𝑥 〉 = 〈 𝑋 , 𝑋 〉 ) |
| 18 | 17 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) = ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) ) |
| 19 | 18 | oveqd | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) ) |
| 20 | 19 | eqeq1d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |
| 21 | 16 20 | raleqbidv | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |
| 22 | 15 21 | anbi12d | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 23 | 22 | ralbidv | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 24 | 9 23 | riotaeqbidv | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝑋 ) → ( ℩ 𝑔 ∈ ( 𝑥 𝐻 𝑥 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑥 ) ( 𝑔 ( 〈 𝑦 , 𝑥 〉 · 𝑥 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑥 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑥 , 𝑥 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) = ( ℩ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |
| 25 | riotaex | ⊢ ( ℩ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ∈ V | |
| 26 | 25 | a1i | ⊢ ( 𝜑 → ( ℩ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ∈ V ) |
| 27 | 7 24 6 26 | fvmptd | ⊢ ( 𝜑 → ( 1 ‘ 𝑋 ) = ( ℩ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) |