This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Each object in a category has a unique identity arrow. (Contributed by Mario Carneiro, 2-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | catidex.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| catidex.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| catidex.o | ⊢ · = ( comp ‘ 𝐶 ) | ||
| catidex.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| catidex.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | catideu | ⊢ ( 𝜑 → ∃! 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | catidex.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 2 | catidex.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 3 | catidex.o | ⊢ · = ( comp ‘ 𝐶 ) | |
| 4 | catidex.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 5 | catidex.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 6 | 1 2 3 4 5 | catidex | ⊢ ( 𝜑 → ∃ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |
| 7 | oveq1 | ⊢ ( 𝑦 = 𝑋 → ( 𝑦 𝐻 𝑋 ) = ( 𝑋 𝐻 𝑋 ) ) | |
| 8 | opeq1 | ⊢ ( 𝑦 = 𝑋 → 〈 𝑦 , 𝑋 〉 = 〈 𝑋 , 𝑋 〉 ) | |
| 9 | 8 | oveq1d | ⊢ ( 𝑦 = 𝑋 → ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) = ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ) |
| 10 | 9 | oveqd | ⊢ ( 𝑦 = 𝑋 → ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) |
| 11 | 10 | eqeq1d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ↔ ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) ) |
| 12 | 7 11 | raleqbidv | ⊢ ( 𝑦 = 𝑋 → ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) ) |
| 13 | oveq2 | ⊢ ( 𝑦 = 𝑋 → ( 𝑋 𝐻 𝑦 ) = ( 𝑋 𝐻 𝑋 ) ) | |
| 14 | oveq2 | ⊢ ( 𝑦 = 𝑋 → ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) = ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ) | |
| 15 | 14 | oveqd | ⊢ ( 𝑦 = 𝑋 → ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) ) |
| 16 | 15 | eqeq1d | ⊢ ( 𝑦 = 𝑋 → ( ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ) |
| 17 | 13 16 | raleqbidv | ⊢ ( 𝑦 = 𝑋 → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ) |
| 18 | 12 17 | anbi12d | ⊢ ( 𝑦 = 𝑋 → ( ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ) ) |
| 19 | 18 | rspcv | ⊢ ( 𝑋 ∈ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ) ) |
| 20 | 5 19 | syl | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ) ) |
| 21 | 20 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ) ) |
| 22 | an3 | ⊢ ( ( ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ∧ ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) | |
| 23 | oveq2 | ⊢ ( 𝑓 = ℎ → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) ) | |
| 24 | id | ⊢ ( 𝑓 = ℎ → 𝑓 = ℎ ) | |
| 25 | 23 24 | eqeq12d | ⊢ ( 𝑓 = ℎ → ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ↔ ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = ℎ ) ) |
| 26 | 25 | rspcv | ⊢ ( ℎ ∈ ( 𝑋 𝐻 𝑋 ) → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = ℎ ) ) |
| 27 | oveq1 | ⊢ ( 𝑓 = 𝑔 → ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) ) | |
| 28 | id | ⊢ ( 𝑓 = 𝑔 → 𝑓 = 𝑔 ) | |
| 29 | 27 28 | eqeq12d | ⊢ ( 𝑓 = 𝑔 → ( ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ↔ ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑔 ) ) |
| 30 | 29 | rspcv | ⊢ ( 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑔 ) ) |
| 31 | 26 30 | im2anan9r | ⊢ ( ( 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑋 ) ) → ( ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) → ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = ℎ ∧ ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑔 ) ) ) |
| 32 | eqtr2 | ⊢ ( ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = ℎ ∧ ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑔 ) → ℎ = 𝑔 ) | |
| 33 | 32 | equcomd | ⊢ ( ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = ℎ ∧ ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑔 ) → 𝑔 = ℎ ) |
| 34 | 22 31 33 | syl56 | ⊢ ( ( 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∧ ℎ ∈ ( 𝑋 𝐻 𝑋 ) ) → ( ( ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ∧ ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) → 𝑔 = ℎ ) ) |
| 35 | 34 | rgen2 | ⊢ ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑋 𝐻 𝑋 ) ( ( ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ∧ ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) → 𝑔 = ℎ ) |
| 36 | 35 | a1i | ⊢ ( 𝜑 → ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑋 𝐻 𝑋 ) ( ( ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ∧ ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) → 𝑔 = ℎ ) ) |
| 37 | oveq1 | ⊢ ( 𝑔 = ℎ → ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) ) | |
| 38 | 37 | eqeq1d | ⊢ ( 𝑔 = ℎ → ( ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ↔ ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) ) |
| 39 | 38 | ralbidv | ⊢ ( 𝑔 = ℎ → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ) ) |
| 40 | oveq2 | ⊢ ( 𝑔 = ℎ → ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) ) | |
| 41 | 40 | eqeq1d | ⊢ ( 𝑔 = ℎ → ( ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ↔ ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) |
| 42 | 41 | ralbidv | ⊢ ( 𝑔 = ℎ → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ↔ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) |
| 43 | 39 42 | anbi12d | ⊢ ( 𝑔 = ℎ → ( ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ↔ ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) ) |
| 44 | 43 | rmo4 | ⊢ ( ∃* 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ↔ ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ ℎ ∈ ( 𝑋 𝐻 𝑋 ) ( ( ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ∧ ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( ℎ ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) ℎ ) = 𝑓 ) ) → 𝑔 = ℎ ) ) |
| 45 | 36 44 | sylibr | ⊢ ( 𝜑 → ∃* 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ) |
| 46 | rmoim | ⊢ ( ∀ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ( ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) → ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) ) → ( ∃* 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ( ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑋 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑋 ) 𝑔 ) = 𝑓 ) → ∃* 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) | |
| 47 | 21 45 46 | sylc | ⊢ ( 𝜑 → ∃* 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |
| 48 | reu5 | ⊢ ( ∃! 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ↔ ( ∃ 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ∧ ∃* 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) ) | |
| 49 | 6 47 48 | sylanbrc | ⊢ ( 𝜑 → ∃! 𝑔 ∈ ( 𝑋 𝐻 𝑋 ) ∀ 𝑦 ∈ 𝐵 ( ∀ 𝑓 ∈ ( 𝑦 𝐻 𝑋 ) ( 𝑔 ( 〈 𝑦 , 𝑋 〉 · 𝑋 ) 𝑓 ) = 𝑓 ∧ ∀ 𝑓 ∈ ( 𝑋 𝐻 𝑦 ) ( 𝑓 ( 〈 𝑋 , 𝑋 〉 · 𝑦 ) 𝑔 ) = 𝑓 ) ) |