This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category of sets in a "universe" containing the empty set and another set does not have pairwise disjoint hom-sets as required in Axiom CAT 1 in Lang p. 53. Lemma for cat1 . (Contributed by Zhi Wang, 15-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cat1lem.1 | |- C = ( SetCat ` U ) |
|
| cat1lem.2 | |- ( ph -> U e. V ) |
||
| cat1lem.3 | |- B = ( Base ` C ) |
||
| cat1lem.4 | |- H = ( Hom ` C ) |
||
| cat1lem.5 | |- ( ph -> (/) e. U ) |
||
| cat1lem.6 | |- ( ph -> Y e. U ) |
||
| cat1lem.7 | |- ( ph -> (/) =/= Y ) |
||
| Assertion | cat1lem | |- ( ph -> E. x e. B E. y e. B E. z e. B E. w e. B ( ( ( x H y ) i^i ( z H w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cat1lem.1 | |- C = ( SetCat ` U ) |
|
| 2 | cat1lem.2 | |- ( ph -> U e. V ) |
|
| 3 | cat1lem.3 | |- B = ( Base ` C ) |
|
| 4 | cat1lem.4 | |- H = ( Hom ` C ) |
|
| 5 | cat1lem.5 | |- ( ph -> (/) e. U ) |
|
| 6 | cat1lem.6 | |- ( ph -> Y e. U ) |
|
| 7 | cat1lem.7 | |- ( ph -> (/) =/= Y ) |
|
| 8 | 1 2 | setcbas | |- ( ph -> U = ( Base ` C ) ) |
| 9 | 8 3 | eqtr4di | |- ( ph -> U = B ) |
| 10 | 5 9 | eleqtrd | |- ( ph -> (/) e. B ) |
| 11 | 6 9 | eleqtrd | |- ( ph -> Y e. B ) |
| 12 | f0 | |- (/) : (/) --> (/) |
|
| 13 | 1 2 4 5 5 | elsetchom | |- ( ph -> ( (/) e. ( (/) H (/) ) <-> (/) : (/) --> (/) ) ) |
| 14 | 12 13 | mpbiri | |- ( ph -> (/) e. ( (/) H (/) ) ) |
| 15 | f0 | |- (/) : (/) --> Y |
|
| 16 | 1 2 4 5 6 | elsetchom | |- ( ph -> ( (/) e. ( (/) H Y ) <-> (/) : (/) --> Y ) ) |
| 17 | 15 16 | mpbiri | |- ( ph -> (/) e. ( (/) H Y ) ) |
| 18 | inelcm | |- ( ( (/) e. ( (/) H (/) ) /\ (/) e. ( (/) H Y ) ) -> ( ( (/) H (/) ) i^i ( (/) H Y ) ) =/= (/) ) |
|
| 19 | 14 17 18 | syl2anc | |- ( ph -> ( ( (/) H (/) ) i^i ( (/) H Y ) ) =/= (/) ) |
| 20 | 7 | neneqd | |- ( ph -> -. (/) = Y ) |
| 21 | 20 | intnand | |- ( ph -> -. ( (/) = (/) /\ (/) = Y ) ) |
| 22 | oveq1 | |- ( z = (/) -> ( z H w ) = ( (/) H w ) ) |
|
| 23 | 22 | ineq2d | |- ( z = (/) -> ( ( (/) H (/) ) i^i ( z H w ) ) = ( ( (/) H (/) ) i^i ( (/) H w ) ) ) |
| 24 | 23 | neeq1d | |- ( z = (/) -> ( ( ( (/) H (/) ) i^i ( z H w ) ) =/= (/) <-> ( ( (/) H (/) ) i^i ( (/) H w ) ) =/= (/) ) ) |
| 25 | eqeq2 | |- ( z = (/) -> ( (/) = z <-> (/) = (/) ) ) |
|
| 26 | 25 | anbi1d | |- ( z = (/) -> ( ( (/) = z /\ (/) = w ) <-> ( (/) = (/) /\ (/) = w ) ) ) |
| 27 | 26 | notbid | |- ( z = (/) -> ( -. ( (/) = z /\ (/) = w ) <-> -. ( (/) = (/) /\ (/) = w ) ) ) |
| 28 | 24 27 | anbi12d | |- ( z = (/) -> ( ( ( ( (/) H (/) ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ (/) = w ) ) <-> ( ( ( (/) H (/) ) i^i ( (/) H w ) ) =/= (/) /\ -. ( (/) = (/) /\ (/) = w ) ) ) ) |
| 29 | oveq2 | |- ( w = Y -> ( (/) H w ) = ( (/) H Y ) ) |
|
| 30 | 29 | ineq2d | |- ( w = Y -> ( ( (/) H (/) ) i^i ( (/) H w ) ) = ( ( (/) H (/) ) i^i ( (/) H Y ) ) ) |
| 31 | 30 | neeq1d | |- ( w = Y -> ( ( ( (/) H (/) ) i^i ( (/) H w ) ) =/= (/) <-> ( ( (/) H (/) ) i^i ( (/) H Y ) ) =/= (/) ) ) |
| 32 | eqeq2 | |- ( w = Y -> ( (/) = w <-> (/) = Y ) ) |
|
| 33 | 32 | anbi2d | |- ( w = Y -> ( ( (/) = (/) /\ (/) = w ) <-> ( (/) = (/) /\ (/) = Y ) ) ) |
| 34 | 33 | notbid | |- ( w = Y -> ( -. ( (/) = (/) /\ (/) = w ) <-> -. ( (/) = (/) /\ (/) = Y ) ) ) |
| 35 | 31 34 | anbi12d | |- ( w = Y -> ( ( ( ( (/) H (/) ) i^i ( (/) H w ) ) =/= (/) /\ -. ( (/) = (/) /\ (/) = w ) ) <-> ( ( ( (/) H (/) ) i^i ( (/) H Y ) ) =/= (/) /\ -. ( (/) = (/) /\ (/) = Y ) ) ) ) |
| 36 | 28 35 | rspc2ev | |- ( ( (/) e. B /\ Y e. B /\ ( ( ( (/) H (/) ) i^i ( (/) H Y ) ) =/= (/) /\ -. ( (/) = (/) /\ (/) = Y ) ) ) -> E. z e. B E. w e. B ( ( ( (/) H (/) ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ (/) = w ) ) ) |
| 37 | 10 11 19 21 36 | syl112anc | |- ( ph -> E. z e. B E. w e. B ( ( ( (/) H (/) ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ (/) = w ) ) ) |
| 38 | oveq1 | |- ( x = (/) -> ( x H y ) = ( (/) H y ) ) |
|
| 39 | 38 | ineq1d | |- ( x = (/) -> ( ( x H y ) i^i ( z H w ) ) = ( ( (/) H y ) i^i ( z H w ) ) ) |
| 40 | 39 | neeq1d | |- ( x = (/) -> ( ( ( x H y ) i^i ( z H w ) ) =/= (/) <-> ( ( (/) H y ) i^i ( z H w ) ) =/= (/) ) ) |
| 41 | eqeq1 | |- ( x = (/) -> ( x = z <-> (/) = z ) ) |
|
| 42 | 41 | anbi1d | |- ( x = (/) -> ( ( x = z /\ y = w ) <-> ( (/) = z /\ y = w ) ) ) |
| 43 | 42 | notbid | |- ( x = (/) -> ( -. ( x = z /\ y = w ) <-> -. ( (/) = z /\ y = w ) ) ) |
| 44 | 40 43 | anbi12d | |- ( x = (/) -> ( ( ( ( x H y ) i^i ( z H w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> ( ( ( (/) H y ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ y = w ) ) ) ) |
| 45 | 44 | 2rexbidv | |- ( x = (/) -> ( E. z e. B E. w e. B ( ( ( x H y ) i^i ( z H w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) <-> E. z e. B E. w e. B ( ( ( (/) H y ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ y = w ) ) ) ) |
| 46 | oveq2 | |- ( y = (/) -> ( (/) H y ) = ( (/) H (/) ) ) |
|
| 47 | 46 | ineq1d | |- ( y = (/) -> ( ( (/) H y ) i^i ( z H w ) ) = ( ( (/) H (/) ) i^i ( z H w ) ) ) |
| 48 | 47 | neeq1d | |- ( y = (/) -> ( ( ( (/) H y ) i^i ( z H w ) ) =/= (/) <-> ( ( (/) H (/) ) i^i ( z H w ) ) =/= (/) ) ) |
| 49 | eqeq1 | |- ( y = (/) -> ( y = w <-> (/) = w ) ) |
|
| 50 | 49 | anbi2d | |- ( y = (/) -> ( ( (/) = z /\ y = w ) <-> ( (/) = z /\ (/) = w ) ) ) |
| 51 | 50 | notbid | |- ( y = (/) -> ( -. ( (/) = z /\ y = w ) <-> -. ( (/) = z /\ (/) = w ) ) ) |
| 52 | 48 51 | anbi12d | |- ( y = (/) -> ( ( ( ( (/) H y ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ y = w ) ) <-> ( ( ( (/) H (/) ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ (/) = w ) ) ) ) |
| 53 | 52 | 2rexbidv | |- ( y = (/) -> ( E. z e. B E. w e. B ( ( ( (/) H y ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ y = w ) ) <-> E. z e. B E. w e. B ( ( ( (/) H (/) ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ (/) = w ) ) ) ) |
| 54 | 45 53 | rspc2ev | |- ( ( (/) e. B /\ (/) e. B /\ E. z e. B E. w e. B ( ( ( (/) H (/) ) i^i ( z H w ) ) =/= (/) /\ -. ( (/) = z /\ (/) = w ) ) ) -> E. x e. B E. y e. B E. z e. B E. w e. B ( ( ( x H y ) i^i ( z H w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) |
| 55 | 10 10 37 54 | syl3anc | |- ( ph -> E. x e. B E. y e. B E. z e. B E. w e. B ( ( ( x H y ) i^i ( z H w ) ) =/= (/) /\ -. ( x = z /\ y = w ) ) ) |