This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate characterization of the weak dominance predicate which does not require special treatment of the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brwdom2 | ⊢ ( 𝑌 ∈ 𝑉 → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝑌 ∈ 𝑉 → 𝑌 ∈ V ) | |
| 2 | 0wdom | ⊢ ( 𝑌 ∈ V → ∅ ≼* 𝑌 ) | |
| 3 | breq1 | ⊢ ( 𝑋 = ∅ → ( 𝑋 ≼* 𝑌 ↔ ∅ ≼* 𝑌 ) ) | |
| 4 | 2 3 | syl5ibrcom | ⊢ ( 𝑌 ∈ V → ( 𝑋 = ∅ → 𝑋 ≼* 𝑌 ) ) |
| 5 | 4 | imp | ⊢ ( ( 𝑌 ∈ V ∧ 𝑋 = ∅ ) → 𝑋 ≼* 𝑌 ) |
| 6 | 0elpw | ⊢ ∅ ∈ 𝒫 𝑌 | |
| 7 | f1o0 | ⊢ ∅ : ∅ –1-1-onto→ ∅ | |
| 8 | f1ofo | ⊢ ( ∅ : ∅ –1-1-onto→ ∅ → ∅ : ∅ –onto→ ∅ ) | |
| 9 | 0ex | ⊢ ∅ ∈ V | |
| 10 | foeq1 | ⊢ ( 𝑧 = ∅ → ( 𝑧 : ∅ –onto→ ∅ ↔ ∅ : ∅ –onto→ ∅ ) ) | |
| 11 | 9 10 | spcev | ⊢ ( ∅ : ∅ –onto→ ∅ → ∃ 𝑧 𝑧 : ∅ –onto→ ∅ ) |
| 12 | 7 8 11 | mp2b | ⊢ ∃ 𝑧 𝑧 : ∅ –onto→ ∅ |
| 13 | foeq2 | ⊢ ( 𝑦 = ∅ → ( 𝑧 : 𝑦 –onto→ ∅ ↔ 𝑧 : ∅ –onto→ ∅ ) ) | |
| 14 | 13 | exbidv | ⊢ ( 𝑦 = ∅ → ( ∃ 𝑧 𝑧 : 𝑦 –onto→ ∅ ↔ ∃ 𝑧 𝑧 : ∅ –onto→ ∅ ) ) |
| 15 | 14 | rspcev | ⊢ ( ( ∅ ∈ 𝒫 𝑌 ∧ ∃ 𝑧 𝑧 : ∅ –onto→ ∅ ) → ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ ∅ ) |
| 16 | 6 12 15 | mp2an | ⊢ ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ ∅ |
| 17 | foeq3 | ⊢ ( 𝑋 = ∅ → ( 𝑧 : 𝑦 –onto→ 𝑋 ↔ 𝑧 : 𝑦 –onto→ ∅ ) ) | |
| 18 | 17 | exbidv | ⊢ ( 𝑋 = ∅ → ( ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ↔ ∃ 𝑧 𝑧 : 𝑦 –onto→ ∅ ) ) |
| 19 | 18 | rexbidv | ⊢ ( 𝑋 = ∅ → ( ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ↔ ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ ∅ ) ) |
| 20 | 16 19 | mpbiri | ⊢ ( 𝑋 = ∅ → ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) |
| 21 | 20 | adantl | ⊢ ( ( 𝑌 ∈ V ∧ 𝑋 = ∅ ) → ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) |
| 22 | 5 21 | 2thd | ⊢ ( ( 𝑌 ∈ V ∧ 𝑋 = ∅ ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |
| 23 | brwdomn0 | ⊢ ( 𝑋 ≠ ∅ → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ) ) | |
| 24 | 23 | adantl | ⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ) ) |
| 25 | foeq1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 : 𝑌 –onto→ 𝑋 ↔ 𝑧 : 𝑌 –onto→ 𝑋 ) ) | |
| 26 | 25 | cbvexvw | ⊢ ( ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) |
| 27 | pwidg | ⊢ ( 𝑌 ∈ V → 𝑌 ∈ 𝒫 𝑌 ) | |
| 28 | 27 | ad2antrr | ⊢ ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) → 𝑌 ∈ 𝒫 𝑌 ) |
| 29 | foeq2 | ⊢ ( 𝑦 = 𝑌 → ( 𝑧 : 𝑦 –onto→ 𝑋 ↔ 𝑧 : 𝑌 –onto→ 𝑋 ) ) | |
| 30 | 29 | exbidv | ⊢ ( 𝑦 = 𝑌 → ( ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ↔ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) ) |
| 31 | 30 | rspcev | ⊢ ( ( 𝑌 ∈ 𝒫 𝑌 ∧ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) → ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) |
| 32 | 28 31 | sylancom | ⊢ ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 ) → ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) |
| 33 | 32 | ex | ⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑧 𝑧 : 𝑌 –onto→ 𝑋 → ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |
| 34 | 26 33 | biimtrid | ⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 → ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |
| 35 | n0 | ⊢ ( 𝑋 ≠ ∅ ↔ ∃ 𝑤 𝑤 ∈ 𝑋 ) | |
| 36 | 35 | biimpi | ⊢ ( 𝑋 ≠ ∅ → ∃ 𝑤 𝑤 ∈ 𝑋 ) |
| 37 | 36 | ad2antlr | ⊢ ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) → ∃ 𝑤 𝑤 ∈ 𝑋 ) |
| 38 | vex | ⊢ 𝑧 ∈ V | |
| 39 | difexg | ⊢ ( 𝑌 ∈ V → ( 𝑌 ∖ 𝑦 ) ∈ V ) | |
| 40 | vsnex | ⊢ { 𝑤 } ∈ V | |
| 41 | xpexg | ⊢ ( ( ( 𝑌 ∖ 𝑦 ) ∈ V ∧ { 𝑤 } ∈ V ) → ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ∈ V ) | |
| 42 | 39 40 41 | sylancl | ⊢ ( 𝑌 ∈ V → ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ∈ V ) |
| 43 | unexg | ⊢ ( ( 𝑧 ∈ V ∧ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ∈ V ) → ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) ∈ V ) | |
| 44 | 38 42 43 | sylancr | ⊢ ( 𝑌 ∈ V → ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) ∈ V ) |
| 45 | 44 | adantr | ⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) → ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) ∈ V ) |
| 46 | 45 | ad2antrr | ⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) ∈ V ) |
| 47 | fofn | ⊢ ( 𝑧 : 𝑦 –onto→ 𝑋 → 𝑧 Fn 𝑦 ) | |
| 48 | 47 | adantl | ⊢ ( ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) → 𝑧 Fn 𝑦 ) |
| 49 | 48 | ad2antlr | ⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → 𝑧 Fn 𝑦 ) |
| 50 | vex | ⊢ 𝑤 ∈ V | |
| 51 | fnconstg | ⊢ ( 𝑤 ∈ V → ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) Fn ( 𝑌 ∖ 𝑦 ) ) | |
| 52 | 50 51 | mp1i | ⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) Fn ( 𝑌 ∖ 𝑦 ) ) |
| 53 | disjdif | ⊢ ( 𝑦 ∩ ( 𝑌 ∖ 𝑦 ) ) = ∅ | |
| 54 | 53 | a1i | ⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑦 ∩ ( 𝑌 ∖ 𝑦 ) ) = ∅ ) |
| 55 | 49 52 54 | fnund | ⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) Fn ( 𝑦 ∪ ( 𝑌 ∖ 𝑦 ) ) ) |
| 56 | elpwi | ⊢ ( 𝑦 ∈ 𝒫 𝑌 → 𝑦 ⊆ 𝑌 ) | |
| 57 | undif | ⊢ ( 𝑦 ⊆ 𝑌 ↔ ( 𝑦 ∪ ( 𝑌 ∖ 𝑦 ) ) = 𝑌 ) | |
| 58 | 56 57 | sylib | ⊢ ( 𝑦 ∈ 𝒫 𝑌 → ( 𝑦 ∪ ( 𝑌 ∖ 𝑦 ) ) = 𝑌 ) |
| 59 | 58 | ad2antrl | ⊢ ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) → ( 𝑦 ∪ ( 𝑌 ∖ 𝑦 ) ) = 𝑌 ) |
| 60 | 59 | adantr | ⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑦 ∪ ( 𝑌 ∖ 𝑦 ) ) = 𝑌 ) |
| 61 | 60 | fneq2d | ⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) Fn ( 𝑦 ∪ ( 𝑌 ∖ 𝑦 ) ) ↔ ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) Fn 𝑌 ) ) |
| 62 | 55 61 | mpbid | ⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) Fn 𝑌 ) |
| 63 | rnun | ⊢ ran ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) = ( ran 𝑧 ∪ ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) | |
| 64 | forn | ⊢ ( 𝑧 : 𝑦 –onto→ 𝑋 → ran 𝑧 = 𝑋 ) | |
| 65 | 64 | ad2antll | ⊢ ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) → ran 𝑧 = 𝑋 ) |
| 66 | 65 | adantr | ⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ran 𝑧 = 𝑋 ) |
| 67 | 66 | uneq1d | ⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ran 𝑧 ∪ ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) = ( 𝑋 ∪ ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) ) |
| 68 | fconst6g | ⊢ ( 𝑤 ∈ 𝑋 → ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) : ( 𝑌 ∖ 𝑦 ) ⟶ 𝑋 ) | |
| 69 | 68 | frnd | ⊢ ( 𝑤 ∈ 𝑋 → ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ⊆ 𝑋 ) |
| 70 | 69 | adantl | ⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ⊆ 𝑋 ) |
| 71 | ssequn2 | ⊢ ( ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ⊆ 𝑋 ↔ ( 𝑋 ∪ ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) = 𝑋 ) | |
| 72 | 70 71 | sylib | ⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑋 ∪ ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) = 𝑋 ) |
| 73 | 67 72 | eqtrd | ⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ran 𝑧 ∪ ran ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) = 𝑋 ) |
| 74 | 63 73 | eqtrid | ⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ran ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) = 𝑋 ) |
| 75 | df-fo | ⊢ ( ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) : 𝑌 –onto→ 𝑋 ↔ ( ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) Fn 𝑌 ∧ ran ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) = 𝑋 ) ) | |
| 76 | 62 74 75 | sylanbrc | ⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) : 𝑌 –onto→ 𝑋 ) |
| 77 | foeq1 | ⊢ ( 𝑥 = ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) → ( 𝑥 : 𝑌 –onto→ 𝑋 ↔ ( 𝑧 ∪ ( ( 𝑌 ∖ 𝑦 ) × { 𝑤 } ) ) : 𝑌 –onto→ 𝑋 ) ) | |
| 78 | 46 76 77 | spcedv | ⊢ ( ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) ∧ 𝑤 ∈ 𝑋 ) → ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ) |
| 79 | 37 78 | exlimddv | ⊢ ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ ( 𝑦 ∈ 𝒫 𝑌 ∧ 𝑧 : 𝑦 –onto→ 𝑋 ) ) → ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ) |
| 80 | 79 | expr | ⊢ ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( 𝑧 : 𝑦 –onto→ 𝑋 → ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ) ) |
| 81 | 80 | exlimdv | ⊢ ( ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) ∧ 𝑦 ∈ 𝒫 𝑌 ) → ( ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 → ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ) ) |
| 82 | 81 | rexlimdva | ⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 → ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ) ) |
| 83 | 34 82 | impbid | ⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑥 𝑥 : 𝑌 –onto→ 𝑋 ↔ ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |
| 84 | 24 83 | bitrd | ⊢ ( ( 𝑌 ∈ V ∧ 𝑋 ≠ ∅ ) → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |
| 85 | 22 84 | pm2.61dane | ⊢ ( 𝑌 ∈ V → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |
| 86 | 1 85 | syl | ⊢ ( 𝑌 ∈ 𝑉 → ( 𝑋 ≼* 𝑌 ↔ ∃ 𝑦 ∈ 𝒫 𝑌 ∃ 𝑧 𝑧 : 𝑦 –onto→ 𝑋 ) ) |