This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: _I is equal to the intersection of SSet and its converse. (Contributed by Scott Fenton, 31-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | idsset | ⊢ I = ( SSet ∩ ◡ SSet ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reli | ⊢ Rel I | |
| 2 | relsset | ⊢ Rel SSet | |
| 3 | relin1 | ⊢ ( Rel SSet → Rel ( SSet ∩ ◡ SSet ) ) | |
| 4 | 2 3 | ax-mp | ⊢ Rel ( SSet ∩ ◡ SSet ) |
| 5 | eqss | ⊢ ( 𝑦 = 𝑧 ↔ ( 𝑦 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) | |
| 6 | vex | ⊢ 𝑧 ∈ V | |
| 7 | 6 | ideq | ⊢ ( 𝑦 I 𝑧 ↔ 𝑦 = 𝑧 ) |
| 8 | brin | ⊢ ( 𝑦 ( SSet ∩ ◡ SSet ) 𝑧 ↔ ( 𝑦 SSet 𝑧 ∧ 𝑦 ◡ SSet 𝑧 ) ) | |
| 9 | 6 | brsset | ⊢ ( 𝑦 SSet 𝑧 ↔ 𝑦 ⊆ 𝑧 ) |
| 10 | vex | ⊢ 𝑦 ∈ V | |
| 11 | 10 6 | brcnv | ⊢ ( 𝑦 ◡ SSet 𝑧 ↔ 𝑧 SSet 𝑦 ) |
| 12 | 10 | brsset | ⊢ ( 𝑧 SSet 𝑦 ↔ 𝑧 ⊆ 𝑦 ) |
| 13 | 11 12 | bitri | ⊢ ( 𝑦 ◡ SSet 𝑧 ↔ 𝑧 ⊆ 𝑦 ) |
| 14 | 9 13 | anbi12i | ⊢ ( ( 𝑦 SSet 𝑧 ∧ 𝑦 ◡ SSet 𝑧 ) ↔ ( 𝑦 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) |
| 15 | 8 14 | bitri | ⊢ ( 𝑦 ( SSet ∩ ◡ SSet ) 𝑧 ↔ ( 𝑦 ⊆ 𝑧 ∧ 𝑧 ⊆ 𝑦 ) ) |
| 16 | 5 7 15 | 3bitr4i | ⊢ ( 𝑦 I 𝑧 ↔ 𝑦 ( SSet ∩ ◡ SSet ) 𝑧 ) |
| 17 | 1 4 16 | eqbrriv | ⊢ I = ( SSet ∩ ◡ SSet ) |