This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For sets, the SSet binary relation is equivalent to the subset relationship. (Contributed by Scott Fenton, 31-Mar-2012)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | brsset.1 | |- B e. _V |
|
| Assertion | brsset | |- ( A SSet B <-> A C_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brsset.1 | |- B e. _V |
|
| 2 | relsset | |- Rel SSet |
|
| 3 | 2 | brrelex1i | |- ( A SSet B -> A e. _V ) |
| 4 | 1 | ssex | |- ( A C_ B -> A e. _V ) |
| 5 | breq1 | |- ( x = A -> ( x SSet B <-> A SSet B ) ) |
|
| 6 | sseq1 | |- ( x = A -> ( x C_ B <-> A C_ B ) ) |
|
| 7 | opex | |- <. x , B >. e. _V |
|
| 8 | 7 | elrn | |- ( <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) <-> E. y y ( _E (x) ( _V \ _E ) ) <. x , B >. ) |
| 9 | vex | |- y e. _V |
|
| 10 | vex | |- x e. _V |
|
| 11 | 9 10 1 | brtxp | |- ( y ( _E (x) ( _V \ _E ) ) <. x , B >. <-> ( y _E x /\ y ( _V \ _E ) B ) ) |
| 12 | epel | |- ( y _E x <-> y e. x ) |
|
| 13 | brv | |- y _V B |
|
| 14 | brdif | |- ( y ( _V \ _E ) B <-> ( y _V B /\ -. y _E B ) ) |
|
| 15 | 13 14 | mpbiran | |- ( y ( _V \ _E ) B <-> -. y _E B ) |
| 16 | 1 | epeli | |- ( y _E B <-> y e. B ) |
| 17 | 15 16 | xchbinx | |- ( y ( _V \ _E ) B <-> -. y e. B ) |
| 18 | 12 17 | anbi12i | |- ( ( y _E x /\ y ( _V \ _E ) B ) <-> ( y e. x /\ -. y e. B ) ) |
| 19 | 11 18 | bitri | |- ( y ( _E (x) ( _V \ _E ) ) <. x , B >. <-> ( y e. x /\ -. y e. B ) ) |
| 20 | 19 | exbii | |- ( E. y y ( _E (x) ( _V \ _E ) ) <. x , B >. <-> E. y ( y e. x /\ -. y e. B ) ) |
| 21 | exanali | |- ( E. y ( y e. x /\ -. y e. B ) <-> -. A. y ( y e. x -> y e. B ) ) |
|
| 22 | 8 20 21 | 3bitrri | |- ( -. A. y ( y e. x -> y e. B ) <-> <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) ) |
| 23 | 22 | con1bii | |- ( -. <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) <-> A. y ( y e. x -> y e. B ) ) |
| 24 | df-br | |- ( x SSet B <-> <. x , B >. e. SSet ) |
|
| 25 | df-sset | |- SSet = ( ( _V X. _V ) \ ran ( _E (x) ( _V \ _E ) ) ) |
|
| 26 | 25 | eleq2i | |- ( <. x , B >. e. SSet <-> <. x , B >. e. ( ( _V X. _V ) \ ran ( _E (x) ( _V \ _E ) ) ) ) |
| 27 | 10 1 | opelvv | |- <. x , B >. e. ( _V X. _V ) |
| 28 | eldif | |- ( <. x , B >. e. ( ( _V X. _V ) \ ran ( _E (x) ( _V \ _E ) ) ) <-> ( <. x , B >. e. ( _V X. _V ) /\ -. <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) ) ) |
|
| 29 | 27 28 | mpbiran | |- ( <. x , B >. e. ( ( _V X. _V ) \ ran ( _E (x) ( _V \ _E ) ) ) <-> -. <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) ) |
| 30 | 26 29 | bitri | |- ( <. x , B >. e. SSet <-> -. <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) ) |
| 31 | 24 30 | bitri | |- ( x SSet B <-> -. <. x , B >. e. ran ( _E (x) ( _V \ _E ) ) ) |
| 32 | df-ss | |- ( x C_ B <-> A. y ( y e. x -> y e. B ) ) |
|
| 33 | 23 31 32 | 3bitr4i | |- ( x SSet B <-> x C_ B ) |
| 34 | 5 6 33 | vtoclbg | |- ( A e. _V -> ( A SSet B <-> A C_ B ) ) |
| 35 | 3 4 34 | pm5.21nii | |- ( A SSet B <-> A C_ B ) |