This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the Bigcup function, which, per fvbigcup , carries a set to its union. (Contributed by Scott Fenton, 11-Apr-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-bigcup | ⊢ Bigcup = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ E ) ⊗ V ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cbigcup | ⊢ Bigcup | |
| 1 | cvv | ⊢ V | |
| 2 | 1 1 | cxp | ⊢ ( V × V ) |
| 3 | cep | ⊢ E | |
| 4 | 1 3 | ctxp | ⊢ ( V ⊗ E ) |
| 5 | 3 3 | ccom | ⊢ ( E ∘ E ) |
| 6 | 5 1 | ctxp | ⊢ ( ( E ∘ E ) ⊗ V ) |
| 7 | 4 6 | csymdif | ⊢ ( ( V ⊗ E ) △ ( ( E ∘ E ) ⊗ V ) ) |
| 8 | 7 | crn | ⊢ ran ( ( V ⊗ E ) △ ( ( E ∘ E ) ⊗ V ) ) |
| 9 | 2 8 | cdif | ⊢ ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ E ) ⊗ V ) ) ) |
| 10 | 0 9 | wceq | ⊢ Bigcup = ( ( V × V ) ∖ ran ( ( V ⊗ E ) △ ( ( E ∘ E ) ⊗ V ) ) ) |