This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the ball function. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 11-Nov-2013) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blfvalps | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ball ‘ 𝐷 ) = ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bl | ⊢ ball = ( 𝑑 ∈ V ↦ ( 𝑥 ∈ dom dom 𝑑 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ dom dom 𝑑 ∣ ( 𝑥 𝑑 𝑦 ) < 𝑟 } ) ) | |
| 2 | dmeq | ⊢ ( 𝑑 = 𝐷 → dom 𝑑 = dom 𝐷 ) | |
| 3 | 2 | dmeqd | ⊢ ( 𝑑 = 𝐷 → dom dom 𝑑 = dom dom 𝐷 ) |
| 4 | psmetdmdm | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 = dom dom 𝐷 ) | |
| 5 | 4 | eqcomd | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → dom dom 𝐷 = 𝑋 ) |
| 6 | 3 5 | sylan9eqr | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → dom dom 𝑑 = 𝑋 ) |
| 7 | eqidd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ℝ* = ℝ* ) | |
| 8 | simpr | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → 𝑑 = 𝐷 ) | |
| 9 | 8 | oveqd | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( 𝑥 𝑑 𝑦 ) = ( 𝑥 𝐷 𝑦 ) ) |
| 10 | 9 | breq1d | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( ( 𝑥 𝑑 𝑦 ) < 𝑟 ↔ ( 𝑥 𝐷 𝑦 ) < 𝑟 ) ) |
| 11 | 6 10 | rabeqbidv | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → { 𝑦 ∈ dom dom 𝑑 ∣ ( 𝑥 𝑑 𝑦 ) < 𝑟 } = { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) |
| 12 | 6 7 11 | mpoeq123dv | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ 𝑑 = 𝐷 ) → ( 𝑥 ∈ dom dom 𝑑 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ dom dom 𝑑 ∣ ( 𝑥 𝑑 𝑦 ) < 𝑟 } ) = ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) ) |
| 13 | elex | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 ∈ V ) | |
| 14 | ssrab2 | ⊢ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ⊆ 𝑋 | |
| 15 | elfvdm | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 ∈ dom PsMet ) | |
| 16 | 15 | adantr | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ) → 𝑋 ∈ dom PsMet ) |
| 17 | elpw2g | ⊢ ( 𝑋 ∈ dom PsMet → ( { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ⊆ 𝑋 ) ) | |
| 18 | 16 17 | syl | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ) → ( { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ∈ 𝒫 𝑋 ↔ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ⊆ 𝑋 ) ) |
| 19 | 14 18 | mpbiri | ⊢ ( ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑟 ∈ ℝ* ) ) → { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ∈ 𝒫 𝑋 ) |
| 20 | 19 | ralrimivva | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ* { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ∈ 𝒫 𝑋 ) |
| 21 | eqid | ⊢ ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) = ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) | |
| 22 | 21 | fmpo | ⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑟 ∈ ℝ* { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ∈ 𝒫 𝑋 ↔ ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ) |
| 23 | 20 22 | sylib | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ) |
| 24 | xrex | ⊢ ℝ* ∈ V | |
| 25 | xpexg | ⊢ ( ( 𝑋 ∈ dom PsMet ∧ ℝ* ∈ V ) → ( 𝑋 × ℝ* ) ∈ V ) | |
| 26 | 15 24 25 | sylancl | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑋 × ℝ* ) ∈ V ) |
| 27 | 15 | pwexd | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝒫 𝑋 ∈ V ) |
| 28 | fex2 | ⊢ ( ( ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) : ( 𝑋 × ℝ* ) ⟶ 𝒫 𝑋 ∧ ( 𝑋 × ℝ* ) ∈ V ∧ 𝒫 𝑋 ∈ V ) → ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) ∈ V ) | |
| 29 | 23 26 27 28 | syl3anc | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) ∈ V ) |
| 30 | 1 12 13 29 | fvmptd2 | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ball ‘ 𝐷 ) = ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) ) |