This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Recover the base set from a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | psmetdmdm | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 = dom dom 𝐷 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfvex | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 2 | ispsmet | ⊢ ( 𝑋 ∈ V → ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) ↔ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐷 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) ) | |
| 3 | 2 | biimpa | ⊢ ( ( 𝑋 ∈ V ∧ 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐷 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 4 | 1 3 | mpancom | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ∧ ∀ 𝑥 ∈ 𝑋 ( ( 𝑥 𝐷 𝑥 ) = 0 ∧ ∀ 𝑦 ∈ 𝑋 ∀ 𝑧 ∈ 𝑋 ( 𝑥 𝐷 𝑦 ) ≤ ( ( 𝑧 𝐷 𝑥 ) +𝑒 ( 𝑧 𝐷 𝑦 ) ) ) ) ) |
| 5 | 4 | simpld | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* ) |
| 6 | fdm | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → dom 𝐷 = ( 𝑋 × 𝑋 ) ) | |
| 7 | 6 | dmeqd | ⊢ ( 𝐷 : ( 𝑋 × 𝑋 ) ⟶ ℝ* → dom dom 𝐷 = dom ( 𝑋 × 𝑋 ) ) |
| 8 | 5 7 | syl | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → dom dom 𝐷 = dom ( 𝑋 × 𝑋 ) ) |
| 9 | dmxpid | ⊢ dom ( 𝑋 × 𝑋 ) = 𝑋 | |
| 10 | 8 9 | eqtr2di | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → 𝑋 = dom dom 𝐷 ) |