This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the ball function. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 11-Nov-2013) (Proof shortened by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blfval | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) = ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xmetpsmet | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( PsMet ‘ 𝑋 ) ) | |
| 2 | blfvalps | ⊢ ( 𝐷 ∈ ( PsMet ‘ 𝑋 ) → ( ball ‘ 𝐷 ) = ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) ) | |
| 3 | 1 2 | syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( ball ‘ 𝐷 ) = ( 𝑥 ∈ 𝑋 , 𝑟 ∈ ℝ* ↦ { 𝑦 ∈ 𝑋 ∣ ( 𝑥 𝐷 𝑦 ) < 𝑟 } ) ) |