This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the ball function. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 11-Nov-2013) (Revised by Thierry Arnoux, 11-Feb-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | blfvalps | |- ( D e. ( PsMet ` X ) -> ( ball ` D ) = ( x e. X , r e. RR* |-> { y e. X | ( x D y ) < r } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bl | |- ball = ( d e. _V |-> ( x e. dom dom d , r e. RR* |-> { y e. dom dom d | ( x d y ) < r } ) ) |
|
| 2 | dmeq | |- ( d = D -> dom d = dom D ) |
|
| 3 | 2 | dmeqd | |- ( d = D -> dom dom d = dom dom D ) |
| 4 | psmetdmdm | |- ( D e. ( PsMet ` X ) -> X = dom dom D ) |
|
| 5 | 4 | eqcomd | |- ( D e. ( PsMet ` X ) -> dom dom D = X ) |
| 6 | 3 5 | sylan9eqr | |- ( ( D e. ( PsMet ` X ) /\ d = D ) -> dom dom d = X ) |
| 7 | eqidd | |- ( ( D e. ( PsMet ` X ) /\ d = D ) -> RR* = RR* ) |
|
| 8 | simpr | |- ( ( D e. ( PsMet ` X ) /\ d = D ) -> d = D ) |
|
| 9 | 8 | oveqd | |- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( x d y ) = ( x D y ) ) |
| 10 | 9 | breq1d | |- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( ( x d y ) < r <-> ( x D y ) < r ) ) |
| 11 | 6 10 | rabeqbidv | |- ( ( D e. ( PsMet ` X ) /\ d = D ) -> { y e. dom dom d | ( x d y ) < r } = { y e. X | ( x D y ) < r } ) |
| 12 | 6 7 11 | mpoeq123dv | |- ( ( D e. ( PsMet ` X ) /\ d = D ) -> ( x e. dom dom d , r e. RR* |-> { y e. dom dom d | ( x d y ) < r } ) = ( x e. X , r e. RR* |-> { y e. X | ( x D y ) < r } ) ) |
| 13 | elex | |- ( D e. ( PsMet ` X ) -> D e. _V ) |
|
| 14 | ssrab2 | |- { y e. X | ( x D y ) < r } C_ X |
|
| 15 | elfvdm | |- ( D e. ( PsMet ` X ) -> X e. dom PsMet ) |
|
| 16 | 15 | adantr | |- ( ( D e. ( PsMet ` X ) /\ ( x e. X /\ r e. RR* ) ) -> X e. dom PsMet ) |
| 17 | elpw2g | |- ( X e. dom PsMet -> ( { y e. X | ( x D y ) < r } e. ~P X <-> { y e. X | ( x D y ) < r } C_ X ) ) |
|
| 18 | 16 17 | syl | |- ( ( D e. ( PsMet ` X ) /\ ( x e. X /\ r e. RR* ) ) -> ( { y e. X | ( x D y ) < r } e. ~P X <-> { y e. X | ( x D y ) < r } C_ X ) ) |
| 19 | 14 18 | mpbiri | |- ( ( D e. ( PsMet ` X ) /\ ( x e. X /\ r e. RR* ) ) -> { y e. X | ( x D y ) < r } e. ~P X ) |
| 20 | 19 | ralrimivva | |- ( D e. ( PsMet ` X ) -> A. x e. X A. r e. RR* { y e. X | ( x D y ) < r } e. ~P X ) |
| 21 | eqid | |- ( x e. X , r e. RR* |-> { y e. X | ( x D y ) < r } ) = ( x e. X , r e. RR* |-> { y e. X | ( x D y ) < r } ) |
|
| 22 | 21 | fmpo | |- ( A. x e. X A. r e. RR* { y e. X | ( x D y ) < r } e. ~P X <-> ( x e. X , r e. RR* |-> { y e. X | ( x D y ) < r } ) : ( X X. RR* ) --> ~P X ) |
| 23 | 20 22 | sylib | |- ( D e. ( PsMet ` X ) -> ( x e. X , r e. RR* |-> { y e. X | ( x D y ) < r } ) : ( X X. RR* ) --> ~P X ) |
| 24 | xrex | |- RR* e. _V |
|
| 25 | xpexg | |- ( ( X e. dom PsMet /\ RR* e. _V ) -> ( X X. RR* ) e. _V ) |
|
| 26 | 15 24 25 | sylancl | |- ( D e. ( PsMet ` X ) -> ( X X. RR* ) e. _V ) |
| 27 | 15 | pwexd | |- ( D e. ( PsMet ` X ) -> ~P X e. _V ) |
| 28 | fex2 | |- ( ( ( x e. X , r e. RR* |-> { y e. X | ( x D y ) < r } ) : ( X X. RR* ) --> ~P X /\ ( X X. RR* ) e. _V /\ ~P X e. _V ) -> ( x e. X , r e. RR* |-> { y e. X | ( x D y ) < r } ) e. _V ) |
|
| 29 | 23 26 27 28 | syl3anc | |- ( D e. ( PsMet ` X ) -> ( x e. X , r e. RR* |-> { y e. X | ( x D y ) < r } ) e. _V ) |
| 30 | 1 12 13 29 | fvmptd2 | |- ( D e. ( PsMet ` X ) -> ( ball ` D ) = ( x e. X , r e. RR* |-> { y e. X | ( x D y ) < r } ) ) |