This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition law of the monoid of endomorphisms on an object of a category. (Contributed by BJ, 5-Apr-2024) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-endval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| bj-endval.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) | ||
| Assertion | bj-endcomp | ⊢ ( 𝜑 → ( +g ‘ ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ) = ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-endval.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 2 | bj-endval.x | ⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝐶 ) ) | |
| 3 | plusgid | ⊢ +g = Slot ( +g ‘ ndx ) | |
| 4 | fvexd | ⊢ ( 𝜑 → ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ∈ V ) | |
| 5 | 3 4 | strfvnd | ⊢ ( 𝜑 → ( +g ‘ ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ) = ( ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ‘ ( +g ‘ ndx ) ) ) |
| 6 | 1 2 | bj-endval | ⊢ ( 𝜑 → ( ( End ‘ 𝐶 ) ‘ 𝑋 ) = { 〈 ( Base ‘ ndx ) , ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) 〉 , 〈 ( +g ‘ ndx ) , ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〉 } ) |
| 7 | 6 | fveq1d | ⊢ ( 𝜑 → ( ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ‘ ( +g ‘ ndx ) ) = ( { 〈 ( Base ‘ ndx ) , ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) 〉 , 〈 ( +g ‘ ndx ) , ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〉 } ‘ ( +g ‘ ndx ) ) ) |
| 8 | basendxnplusgndx | ⊢ ( Base ‘ ndx ) ≠ ( +g ‘ ndx ) | |
| 9 | fvex | ⊢ ( +g ‘ ndx ) ∈ V | |
| 10 | ovex | ⊢ ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ∈ V | |
| 11 | 9 10 | fvpr2 | ⊢ ( ( Base ‘ ndx ) ≠ ( +g ‘ ndx ) → ( { 〈 ( Base ‘ ndx ) , ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) 〉 , 〈 ( +g ‘ ndx ) , ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〉 } ‘ ( +g ‘ ndx ) ) = ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ) |
| 12 | 8 11 | mp1i | ⊢ ( 𝜑 → ( { 〈 ( Base ‘ ndx ) , ( 𝑋 ( Hom ‘ 𝐶 ) 𝑋 ) 〉 , 〈 ( +g ‘ ndx ) , ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) 〉 } ‘ ( +g ‘ ndx ) ) = ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ) |
| 13 | 5 7 12 | 3eqtrd | ⊢ ( 𝜑 → ( +g ‘ ( ( End ‘ 𝐶 ) ‘ 𝑋 ) ) = ( 〈 𝑋 , 𝑋 〉 ( comp ‘ 𝐶 ) 𝑋 ) ) |