This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The monoid of endomorphisms on an object of a category is a monoid. (Contributed by BJ, 5-Apr-2024) (Proof modification is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-endval.c | |- ( ph -> C e. Cat ) |
|
| bj-endval.x | |- ( ph -> X e. ( Base ` C ) ) |
||
| Assertion | bj-endmnd | |- ( ph -> ( ( End ` C ) ` X ) e. Mnd ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-endval.c | |- ( ph -> C e. Cat ) |
|
| 2 | bj-endval.x | |- ( ph -> X e. ( Base ` C ) ) |
|
| 3 | 1 2 | bj-endbase | |- ( ph -> ( Base ` ( ( End ` C ) ` X ) ) = ( X ( Hom ` C ) X ) ) |
| 4 | 3 | eqcomd | |- ( ph -> ( X ( Hom ` C ) X ) = ( Base ` ( ( End ` C ) ` X ) ) ) |
| 5 | 1 2 | bj-endcomp | |- ( ph -> ( +g ` ( ( End ` C ) ` X ) ) = ( <. X , X >. ( comp ` C ) X ) ) |
| 6 | 5 | eqcomd | |- ( ph -> ( <. X , X >. ( comp ` C ) X ) = ( +g ` ( ( End ` C ) ` X ) ) ) |
| 7 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 8 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 9 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 10 | 1 | 3ad2ant1 | |- ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> C e. Cat ) |
| 11 | 2 | 3ad2ant1 | |- ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> X e. ( Base ` C ) ) |
| 12 | simp3 | |- ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> y e. ( X ( Hom ` C ) X ) ) |
|
| 13 | simp2 | |- ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> x e. ( X ( Hom ` C ) X ) ) |
|
| 14 | 7 8 9 10 11 11 11 12 13 | catcocl | |- ( ( ph /\ x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) ) -> ( x ( <. X , X >. ( comp ` C ) X ) y ) e. ( X ( Hom ` C ) X ) ) |
| 15 | 1 | adantr | |- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> C e. Cat ) |
| 16 | 2 | adantr | |- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> X e. ( Base ` C ) ) |
| 17 | simpr | |- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) |
|
| 18 | simp3 | |- ( ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) -> z e. ( X ( Hom ` C ) X ) ) |
|
| 19 | 17 18 | syl | |- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> z e. ( X ( Hom ` C ) X ) ) |
| 20 | simp2 | |- ( ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) -> y e. ( X ( Hom ` C ) X ) ) |
|
| 21 | 17 20 | syl | |- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> y e. ( X ( Hom ` C ) X ) ) |
| 22 | simp1 | |- ( ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) -> x e. ( X ( Hom ` C ) X ) ) |
|
| 23 | 17 22 | syl | |- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> x e. ( X ( Hom ` C ) X ) ) |
| 24 | 7 8 9 15 16 16 16 19 21 16 23 | catass | |- ( ( ph /\ ( x e. ( X ( Hom ` C ) X ) /\ y e. ( X ( Hom ` C ) X ) /\ z e. ( X ( Hom ` C ) X ) ) ) -> ( ( x ( <. X , X >. ( comp ` C ) X ) y ) ( <. X , X >. ( comp ` C ) X ) z ) = ( x ( <. X , X >. ( comp ` C ) X ) ( y ( <. X , X >. ( comp ` C ) X ) z ) ) ) |
| 25 | eqid | |- ( Id ` C ) = ( Id ` C ) |
|
| 26 | 7 8 25 1 2 | catidcl | |- ( ph -> ( ( Id ` C ) ` X ) e. ( X ( Hom ` C ) X ) ) |
| 27 | 1 | adantr | |- ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> C e. Cat ) |
| 28 | 2 | adantr | |- ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> X e. ( Base ` C ) ) |
| 29 | simpr | |- ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> x e. ( X ( Hom ` C ) X ) ) |
|
| 30 | 7 8 25 27 28 9 28 29 | catlid | |- ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> ( ( ( Id ` C ) ` X ) ( <. X , X >. ( comp ` C ) X ) x ) = x ) |
| 31 | 7 8 25 27 28 9 28 29 | catrid | |- ( ( ph /\ x e. ( X ( Hom ` C ) X ) ) -> ( x ( <. X , X >. ( comp ` C ) X ) ( ( Id ` C ) ` X ) ) = x ) |
| 32 | 4 6 14 24 26 30 31 | ismndd | |- ( ph -> ( ( End ` C ) ` X ) e. Mnd ) |