This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A summation for the difference between ( ( A + 1 ) ^ N ) and ( A ^ N ) . (Contributed by Scott Fenton, 9-Apr-2014) (Revised by Mario Carneiro, 22-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binom1dif | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 + 1 ) ↑ 𝑁 ) − ( 𝐴 ↑ 𝑁 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 0 ... ( 𝑁 − 1 ) ) ∈ Fin ) | |
| 2 | fzssp1 | ⊢ ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) | |
| 3 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 4 | 3 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 5 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 6 | npcan | ⊢ ( ( 𝑁 ∈ ℂ ∧ 1 ∈ ℂ ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 7 | 4 5 6 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 0 ... ( ( 𝑁 − 1 ) + 1 ) ) = ( 0 ... 𝑁 ) ) |
| 9 | 2 8 | sseqtrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 0 ... ( 𝑁 − 1 ) ) ⊆ ( 0 ... 𝑁 ) ) |
| 10 | 9 | sselda | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → 𝑘 ∈ ( 0 ... 𝑁 ) ) |
| 11 | bccl2 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → ( 𝑁 C 𝑘 ) ∈ ℕ ) | |
| 12 | 11 | adantl | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C 𝑘 ) ∈ ℕ ) |
| 13 | 12 | nncnd | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝑁 C 𝑘 ) ∈ ℂ ) |
| 14 | simpl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝐴 ∈ ℂ ) | |
| 15 | elfznn0 | ⊢ ( 𝑘 ∈ ( 0 ... 𝑁 ) → 𝑘 ∈ ℕ0 ) | |
| 16 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) | |
| 17 | 14 15 16 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( 𝐴 ↑ 𝑘 ) ∈ ℂ ) |
| 18 | 13 17 | mulcld | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑁 ) ) → ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
| 19 | 10 18 | syldan | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ) → ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
| 20 | 1 19 | fsumcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ∈ ℂ ) |
| 21 | expcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 ↑ 𝑁 ) ∈ ℂ ) | |
| 22 | addcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℂ ) → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) ) | |
| 23 | 14 5 22 | sylancl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 + 1 ) = ( 1 + 𝐴 ) ) |
| 24 | 23 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 + 1 ) ↑ 𝑁 ) = ( ( 1 + 𝐴 ) ↑ 𝑁 ) ) |
| 25 | binom1p | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 1 + 𝐴 ) ↑ 𝑁 ) = Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) | |
| 26 | simpr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) | |
| 27 | nn0uz | ⊢ ℕ0 = ( ℤ≥ ‘ 0 ) | |
| 28 | 26 27 | eleqtrdi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 29 | oveq2 | ⊢ ( 𝑘 = 𝑁 → ( 𝑁 C 𝑘 ) = ( 𝑁 C 𝑁 ) ) | |
| 30 | oveq2 | ⊢ ( 𝑘 = 𝑁 → ( 𝐴 ↑ 𝑘 ) = ( 𝐴 ↑ 𝑁 ) ) | |
| 31 | 29 30 | oveq12d | ⊢ ( 𝑘 = 𝑁 → ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) = ( ( 𝑁 C 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) |
| 32 | 28 18 31 | fsumm1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( 𝑁 C 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) ) |
| 33 | bcnn | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 C 𝑁 ) = 1 ) | |
| 34 | 33 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 𝑁 C 𝑁 ) = 1 ) |
| 35 | 34 | oveq1d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 C 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) = ( 1 · ( 𝐴 ↑ 𝑁 ) ) ) |
| 36 | 21 | mullidd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( 1 · ( 𝐴 ↑ 𝑁 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 37 | 35 36 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝑁 C 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) = ( 𝐴 ↑ 𝑁 ) ) |
| 38 | 37 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) + ( ( 𝑁 C 𝑁 ) · ( 𝐴 ↑ 𝑁 ) ) ) = ( Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) + ( 𝐴 ↑ 𝑁 ) ) ) |
| 39 | 32 38 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → Σ 𝑘 ∈ ( 0 ... 𝑁 ) ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) = ( Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) + ( 𝐴 ↑ 𝑁 ) ) ) |
| 40 | 24 25 39 | 3eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( 𝐴 + 1 ) ↑ 𝑁 ) = ( Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) + ( 𝐴 ↑ 𝑁 ) ) ) |
| 41 | 20 21 40 | mvrraddd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0 ) → ( ( ( 𝐴 + 1 ) ↑ 𝑁 ) − ( 𝐴 ↑ 𝑁 ) ) = Σ 𝑘 ∈ ( 0 ... ( 𝑁 − 1 ) ) ( ( 𝑁 C 𝑘 ) · ( 𝐴 ↑ 𝑘 ) ) ) |