This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A summation for the difference between ( ( A + 1 ) ^ N ) and ( A ^ N ) . (Contributed by Scott Fenton, 9-Apr-2014) (Revised by Mario Carneiro, 22-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | binom1dif | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( ( A + 1 ) ^ N ) - ( A ^ N ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid | |- ( ( A e. CC /\ N e. NN0 ) -> ( 0 ... ( N - 1 ) ) e. Fin ) |
|
| 2 | fzssp1 | |- ( 0 ... ( N - 1 ) ) C_ ( 0 ... ( ( N - 1 ) + 1 ) ) |
|
| 3 | nn0cn | |- ( N e. NN0 -> N e. CC ) |
|
| 4 | 3 | adantl | |- ( ( A e. CC /\ N e. NN0 ) -> N e. CC ) |
| 5 | ax-1cn | |- 1 e. CC |
|
| 6 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 7 | 4 5 6 | sylancl | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( N - 1 ) + 1 ) = N ) |
| 8 | 7 | oveq2d | |- ( ( A e. CC /\ N e. NN0 ) -> ( 0 ... ( ( N - 1 ) + 1 ) ) = ( 0 ... N ) ) |
| 9 | 2 8 | sseqtrid | |- ( ( A e. CC /\ N e. NN0 ) -> ( 0 ... ( N - 1 ) ) C_ ( 0 ... N ) ) |
| 10 | 9 | sselda | |- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> k e. ( 0 ... N ) ) |
| 11 | bccl2 | |- ( k e. ( 0 ... N ) -> ( N _C k ) e. NN ) |
|
| 12 | 11 | adantl | |- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. NN ) |
| 13 | 12 | nncnd | |- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( N _C k ) e. CC ) |
| 14 | simpl | |- ( ( A e. CC /\ N e. NN0 ) -> A e. CC ) |
|
| 15 | elfznn0 | |- ( k e. ( 0 ... N ) -> k e. NN0 ) |
|
| 16 | expcl | |- ( ( A e. CC /\ k e. NN0 ) -> ( A ^ k ) e. CC ) |
|
| 17 | 14 15 16 | syl2an | |- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( A ^ k ) e. CC ) |
| 18 | 13 17 | mulcld | |- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... N ) ) -> ( ( N _C k ) x. ( A ^ k ) ) e. CC ) |
| 19 | 10 18 | syldan | |- ( ( ( A e. CC /\ N e. NN0 ) /\ k e. ( 0 ... ( N - 1 ) ) ) -> ( ( N _C k ) x. ( A ^ k ) ) e. CC ) |
| 20 | 1 19 | fsumcl | |- ( ( A e. CC /\ N e. NN0 ) -> sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) e. CC ) |
| 21 | expcl | |- ( ( A e. CC /\ N e. NN0 ) -> ( A ^ N ) e. CC ) |
|
| 22 | addcom | |- ( ( A e. CC /\ 1 e. CC ) -> ( A + 1 ) = ( 1 + A ) ) |
|
| 23 | 14 5 22 | sylancl | |- ( ( A e. CC /\ N e. NN0 ) -> ( A + 1 ) = ( 1 + A ) ) |
| 24 | 23 | oveq1d | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( A + 1 ) ^ N ) = ( ( 1 + A ) ^ N ) ) |
| 25 | binom1p | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( 1 + A ) ^ N ) = sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( A ^ k ) ) ) |
|
| 26 | simpr | |- ( ( A e. CC /\ N e. NN0 ) -> N e. NN0 ) |
|
| 27 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 28 | 26 27 | eleqtrdi | |- ( ( A e. CC /\ N e. NN0 ) -> N e. ( ZZ>= ` 0 ) ) |
| 29 | oveq2 | |- ( k = N -> ( N _C k ) = ( N _C N ) ) |
|
| 30 | oveq2 | |- ( k = N -> ( A ^ k ) = ( A ^ N ) ) |
|
| 31 | 29 30 | oveq12d | |- ( k = N -> ( ( N _C k ) x. ( A ^ k ) ) = ( ( N _C N ) x. ( A ^ N ) ) ) |
| 32 | 28 18 31 | fsumm1 | |- ( ( A e. CC /\ N e. NN0 ) -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( A ^ k ) ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) + ( ( N _C N ) x. ( A ^ N ) ) ) ) |
| 33 | bcnn | |- ( N e. NN0 -> ( N _C N ) = 1 ) |
|
| 34 | 33 | adantl | |- ( ( A e. CC /\ N e. NN0 ) -> ( N _C N ) = 1 ) |
| 35 | 34 | oveq1d | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( N _C N ) x. ( A ^ N ) ) = ( 1 x. ( A ^ N ) ) ) |
| 36 | 21 | mullidd | |- ( ( A e. CC /\ N e. NN0 ) -> ( 1 x. ( A ^ N ) ) = ( A ^ N ) ) |
| 37 | 35 36 | eqtrd | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( N _C N ) x. ( A ^ N ) ) = ( A ^ N ) ) |
| 38 | 37 | oveq2d | |- ( ( A e. CC /\ N e. NN0 ) -> ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) + ( ( N _C N ) x. ( A ^ N ) ) ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) + ( A ^ N ) ) ) |
| 39 | 32 38 | eqtrd | |- ( ( A e. CC /\ N e. NN0 ) -> sum_ k e. ( 0 ... N ) ( ( N _C k ) x. ( A ^ k ) ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) + ( A ^ N ) ) ) |
| 40 | 24 25 39 | 3eqtrd | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( A + 1 ) ^ N ) = ( sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) + ( A ^ N ) ) ) |
| 41 | 20 21 40 | mvrraddd | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( ( A + 1 ) ^ N ) - ( A ^ N ) ) = sum_ k e. ( 0 ... ( N - 1 ) ) ( ( N _C k ) x. ( A ^ k ) ) ) |