This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for bezout . (Contributed by Mario Carneiro, 15-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bezout.1 | |- M = { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } |
|
| bezout.3 | |- ( ph -> A e. ZZ ) |
||
| bezout.4 | |- ( ph -> B e. ZZ ) |
||
| Assertion | bezoutlem1 | |- ( ph -> ( A =/= 0 -> ( abs ` A ) e. M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bezout.1 | |- M = { z e. NN | E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) } |
|
| 2 | bezout.3 | |- ( ph -> A e. ZZ ) |
|
| 3 | bezout.4 | |- ( ph -> B e. ZZ ) |
|
| 4 | fveq2 | |- ( z = A -> ( abs ` z ) = ( abs ` A ) ) |
|
| 5 | oveq1 | |- ( z = A -> ( z x. x ) = ( A x. x ) ) |
|
| 6 | 4 5 | eqeq12d | |- ( z = A -> ( ( abs ` z ) = ( z x. x ) <-> ( abs ` A ) = ( A x. x ) ) ) |
| 7 | 6 | rexbidv | |- ( z = A -> ( E. x e. ZZ ( abs ` z ) = ( z x. x ) <-> E. x e. ZZ ( abs ` A ) = ( A x. x ) ) ) |
| 8 | zre | |- ( z e. ZZ -> z e. RR ) |
|
| 9 | 1z | |- 1 e. ZZ |
|
| 10 | ax-1rid | |- ( z e. RR -> ( z x. 1 ) = z ) |
|
| 11 | 10 | eqcomd | |- ( z e. RR -> z = ( z x. 1 ) ) |
| 12 | oveq2 | |- ( x = 1 -> ( z x. x ) = ( z x. 1 ) ) |
|
| 13 | 12 | rspceeqv | |- ( ( 1 e. ZZ /\ z = ( z x. 1 ) ) -> E. x e. ZZ z = ( z x. x ) ) |
| 14 | 9 11 13 | sylancr | |- ( z e. RR -> E. x e. ZZ z = ( z x. x ) ) |
| 15 | eqeq1 | |- ( ( abs ` z ) = z -> ( ( abs ` z ) = ( z x. x ) <-> z = ( z x. x ) ) ) |
|
| 16 | 15 | rexbidv | |- ( ( abs ` z ) = z -> ( E. x e. ZZ ( abs ` z ) = ( z x. x ) <-> E. x e. ZZ z = ( z x. x ) ) ) |
| 17 | 14 16 | syl5ibrcom | |- ( z e. RR -> ( ( abs ` z ) = z -> E. x e. ZZ ( abs ` z ) = ( z x. x ) ) ) |
| 18 | neg1z | |- -u 1 e. ZZ |
|
| 19 | recn | |- ( z e. RR -> z e. CC ) |
|
| 20 | 19 | mulm1d | |- ( z e. RR -> ( -u 1 x. z ) = -u z ) |
| 21 | neg1cn | |- -u 1 e. CC |
|
| 22 | mulcom | |- ( ( -u 1 e. CC /\ z e. CC ) -> ( -u 1 x. z ) = ( z x. -u 1 ) ) |
|
| 23 | 21 19 22 | sylancr | |- ( z e. RR -> ( -u 1 x. z ) = ( z x. -u 1 ) ) |
| 24 | 20 23 | eqtr3d | |- ( z e. RR -> -u z = ( z x. -u 1 ) ) |
| 25 | oveq2 | |- ( x = -u 1 -> ( z x. x ) = ( z x. -u 1 ) ) |
|
| 26 | 25 | rspceeqv | |- ( ( -u 1 e. ZZ /\ -u z = ( z x. -u 1 ) ) -> E. x e. ZZ -u z = ( z x. x ) ) |
| 27 | 18 24 26 | sylancr | |- ( z e. RR -> E. x e. ZZ -u z = ( z x. x ) ) |
| 28 | eqeq1 | |- ( ( abs ` z ) = -u z -> ( ( abs ` z ) = ( z x. x ) <-> -u z = ( z x. x ) ) ) |
|
| 29 | 28 | rexbidv | |- ( ( abs ` z ) = -u z -> ( E. x e. ZZ ( abs ` z ) = ( z x. x ) <-> E. x e. ZZ -u z = ( z x. x ) ) ) |
| 30 | 27 29 | syl5ibrcom | |- ( z e. RR -> ( ( abs ` z ) = -u z -> E. x e. ZZ ( abs ` z ) = ( z x. x ) ) ) |
| 31 | absor | |- ( z e. RR -> ( ( abs ` z ) = z \/ ( abs ` z ) = -u z ) ) |
|
| 32 | 17 30 31 | mpjaod | |- ( z e. RR -> E. x e. ZZ ( abs ` z ) = ( z x. x ) ) |
| 33 | 8 32 | syl | |- ( z e. ZZ -> E. x e. ZZ ( abs ` z ) = ( z x. x ) ) |
| 34 | 7 33 | vtoclga | |- ( A e. ZZ -> E. x e. ZZ ( abs ` A ) = ( A x. x ) ) |
| 35 | 2 34 | syl | |- ( ph -> E. x e. ZZ ( abs ` A ) = ( A x. x ) ) |
| 36 | 3 | zcnd | |- ( ph -> B e. CC ) |
| 37 | 36 | adantr | |- ( ( ph /\ x e. ZZ ) -> B e. CC ) |
| 38 | 37 | mul01d | |- ( ( ph /\ x e. ZZ ) -> ( B x. 0 ) = 0 ) |
| 39 | 38 | oveq2d | |- ( ( ph /\ x e. ZZ ) -> ( ( A x. x ) + ( B x. 0 ) ) = ( ( A x. x ) + 0 ) ) |
| 40 | 2 | zcnd | |- ( ph -> A e. CC ) |
| 41 | zcn | |- ( x e. ZZ -> x e. CC ) |
|
| 42 | mulcl | |- ( ( A e. CC /\ x e. CC ) -> ( A x. x ) e. CC ) |
|
| 43 | 40 41 42 | syl2an | |- ( ( ph /\ x e. ZZ ) -> ( A x. x ) e. CC ) |
| 44 | 43 | addridd | |- ( ( ph /\ x e. ZZ ) -> ( ( A x. x ) + 0 ) = ( A x. x ) ) |
| 45 | 39 44 | eqtrd | |- ( ( ph /\ x e. ZZ ) -> ( ( A x. x ) + ( B x. 0 ) ) = ( A x. x ) ) |
| 46 | 45 | eqeq2d | |- ( ( ph /\ x e. ZZ ) -> ( ( abs ` A ) = ( ( A x. x ) + ( B x. 0 ) ) <-> ( abs ` A ) = ( A x. x ) ) ) |
| 47 | 0z | |- 0 e. ZZ |
|
| 48 | oveq2 | |- ( y = 0 -> ( B x. y ) = ( B x. 0 ) ) |
|
| 49 | 48 | oveq2d | |- ( y = 0 -> ( ( A x. x ) + ( B x. y ) ) = ( ( A x. x ) + ( B x. 0 ) ) ) |
| 50 | 49 | rspceeqv | |- ( ( 0 e. ZZ /\ ( abs ` A ) = ( ( A x. x ) + ( B x. 0 ) ) ) -> E. y e. ZZ ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) ) |
| 51 | 47 50 | mpan | |- ( ( abs ` A ) = ( ( A x. x ) + ( B x. 0 ) ) -> E. y e. ZZ ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) ) |
| 52 | 46 51 | biimtrrdi | |- ( ( ph /\ x e. ZZ ) -> ( ( abs ` A ) = ( A x. x ) -> E. y e. ZZ ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 53 | 52 | reximdva | |- ( ph -> ( E. x e. ZZ ( abs ` A ) = ( A x. x ) -> E. x e. ZZ E. y e. ZZ ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 54 | 35 53 | mpd | |- ( ph -> E. x e. ZZ E. y e. ZZ ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) ) |
| 55 | nnabscl | |- ( ( A e. ZZ /\ A =/= 0 ) -> ( abs ` A ) e. NN ) |
|
| 56 | 55 | ex | |- ( A e. ZZ -> ( A =/= 0 -> ( abs ` A ) e. NN ) ) |
| 57 | 2 56 | syl | |- ( ph -> ( A =/= 0 -> ( abs ` A ) e. NN ) ) |
| 58 | eqeq1 | |- ( z = ( abs ` A ) -> ( z = ( ( A x. x ) + ( B x. y ) ) <-> ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
|
| 59 | 58 | 2rexbidv | |- ( z = ( abs ` A ) -> ( E. x e. ZZ E. y e. ZZ z = ( ( A x. x ) + ( B x. y ) ) <-> E. x e. ZZ E. y e. ZZ ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 60 | 59 1 | elrab2 | |- ( ( abs ` A ) e. M <-> ( ( abs ` A ) e. NN /\ E. x e. ZZ E. y e. ZZ ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) ) ) |
| 61 | 60 | simplbi2com | |- ( E. x e. ZZ E. y e. ZZ ( abs ` A ) = ( ( A x. x ) + ( B x. y ) ) -> ( ( abs ` A ) e. NN -> ( abs ` A ) e. M ) ) |
| 62 | 54 57 61 | sylsyld | |- ( ph -> ( A =/= 0 -> ( abs ` A ) e. M ) ) |