This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar product of a linear operator is a linear operator. (Contributed by NM, 10-Mar-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lnopm.1 | ⊢ 𝑇 ∈ LinOp | |
| Assertion | lnopmi | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·op 𝑇 ) ∈ LinOp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lnopm.1 | ⊢ 𝑇 ∈ LinOp | |
| 2 | 1 | lnopfi | ⊢ 𝑇 : ℋ ⟶ ℋ |
| 3 | homulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ) → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) | |
| 4 | 2 3 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ) |
| 5 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ) | |
| 6 | hvaddcl | ⊢ ( ( ( 𝑥 ·ℎ 𝑦 ) ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) | |
| 7 | 5 6 | sylan | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) |
| 8 | homval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) | |
| 9 | 2 8 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) |
| 10 | 7 9 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝐴 ·op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) |
| 11 | id | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) | |
| 12 | 2 | ffvelcdmi | ⊢ ( 𝑦 ∈ ℋ → ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) |
| 13 | hvmulcl | ⊢ ( ( 𝑥 ∈ ℂ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) | |
| 14 | 12 13 | sylan2 | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ) |
| 15 | 2 | ffvelcdmi | ⊢ ( 𝑧 ∈ ℋ → ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) |
| 16 | ax-hvdistr1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ∈ ℋ ∧ ( 𝑇 ‘ 𝑧 ) ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) = ( ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) +ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) | |
| 17 | 11 14 15 16 | syl3an | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( 𝐴 ·ℎ ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) = ( ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) +ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 18 | 17 | 3expb | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( 𝐴 ·ℎ ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) = ( ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) +ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 19 | 1 | lnopli | ⊢ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 20 | 19 | 3expa | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 21 | 20 | oveq2d | ⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( 𝐴 ·ℎ ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( 𝐴 ·ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) = ( 𝐴 ·ℎ ( ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) +ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 23 | homval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑦 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) | |
| 24 | 2 23 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 25 | 24 | adantrl | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) |
| 26 | 25 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) = ( 𝑥 ·ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 27 | hvmulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ ( 𝑇 ‘ 𝑦 ) ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( 𝑥 ·ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) | |
| 28 | 12 27 | syl3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( 𝑥 ·ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 29 | 28 | 3expb | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) = ( 𝑥 ·ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 30 | 26 29 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) = ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 31 | homval | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑇 : ℋ ⟶ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑧 ) ) ) | |
| 32 | 2 31 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℋ ) → ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) = ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑧 ) ) ) |
| 33 | 30 32 | oveqan12d | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ) ∧ ( 𝐴 ∈ ℂ ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) ) = ( ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) +ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 34 | 33 | anandis | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) ) = ( ( 𝐴 ·ℎ ( 𝑥 ·ℎ ( 𝑇 ‘ 𝑦 ) ) ) +ℎ ( 𝐴 ·ℎ ( 𝑇 ‘ 𝑧 ) ) ) ) |
| 35 | 18 22 34 | 3eqtr4rd | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) ) = ( 𝐴 ·ℎ ( 𝑇 ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) ) ) |
| 36 | 10 35 | eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) ) → ( ( 𝐴 ·op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) ) ) |
| 37 | 36 | exp32 | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ( 𝑧 ∈ ℋ → ( ( 𝐴 ·op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) ) ) ) ) |
| 38 | 37 | ralrimdv | ⊢ ( 𝐴 ∈ ℂ → ( ( 𝑥 ∈ ℂ ∧ 𝑦 ∈ ℋ ) → ∀ 𝑧 ∈ ℋ ( ( 𝐴 ·op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) ) ) ) |
| 39 | 38 | ralrimivv | ⊢ ( 𝐴 ∈ ℂ → ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝐴 ·op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) ) ) |
| 40 | ellnop | ⊢ ( ( 𝐴 ·op 𝑇 ) ∈ LinOp ↔ ( ( 𝐴 ·op 𝑇 ) : ℋ ⟶ ℋ ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦 ∈ ℋ ∀ 𝑧 ∈ ℋ ( ( 𝐴 ·op 𝑇 ) ‘ ( ( 𝑥 ·ℎ 𝑦 ) +ℎ 𝑧 ) ) = ( ( 𝑥 ·ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑦 ) ) +ℎ ( ( 𝐴 ·op 𝑇 ) ‘ 𝑧 ) ) ) ) | |
| 41 | 4 39 40 | sylanbrc | ⊢ ( 𝐴 ∈ ℂ → ( 𝐴 ·op 𝑇 ) ∈ LinOp ) |