This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of the Axiom of Union with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jan-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axunnd | ⊢ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axunndlem1 | ⊢ ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) | |
| 2 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 3 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 | |
| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 5 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 6 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑧 | |
| 7 | 5 6 | nfan | ⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 8 | nfv | ⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) | |
| 9 | nfcvf | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) | |
| 10 | 9 | adantr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 ) |
| 11 | nfcvd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤 ) | |
| 12 | 10 11 | nfeld | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 ∈ 𝑤 ) |
| 13 | nfcvf | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑧 ) | |
| 14 | 13 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧 ) |
| 15 | 11 14 | nfeld | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤 ∈ 𝑧 ) |
| 16 | 12 15 | nfand | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ) |
| 17 | 8 16 | nfexd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ) |
| 18 | 17 12 | nfimd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ) |
| 19 | 7 18 | nfald | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ) |
| 20 | nfcvd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑦 𝑤 ) | |
| 21 | nfcvf2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑥 ) | |
| 22 | 21 | adantr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑦 𝑥 ) |
| 23 | 20 22 | nfeqd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑦 𝑤 = 𝑥 ) |
| 24 | 7 23 | nfan1 | ⊢ Ⅎ 𝑦 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) |
| 25 | elequ2 | ⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 26 | elequ1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) | |
| 27 | 25 26 | anbi12d | ⊢ ( 𝑤 = 𝑥 → ( ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) ) |
| 28 | 27 | a1i | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) ) ) |
| 29 | 4 16 28 | cbvexd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) ) |
| 30 | 29 | adantr | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) ) |
| 31 | 25 | adantl | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥 ) ) |
| 32 | 30 31 | imbi12d | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 33 | 24 32 | albid | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 34 | 33 | ex | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
| 35 | 4 19 34 | cbvexd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑤 ∀ 𝑦 ( ∃ 𝑤 ( 𝑦 ∈ 𝑤 ∧ 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 36 | 1 35 | mpbii | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 37 | 36 | ex | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 38 | nfae | ⊢ Ⅎ 𝑦 ∀ 𝑥 𝑥 = 𝑦 | |
| 39 | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑦 | |
| 40 | elirrv | ⊢ ¬ 𝑦 ∈ 𝑦 | |
| 41 | elequ2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑦 ∈ 𝑥 ↔ 𝑦 ∈ 𝑦 ) ) | |
| 42 | 40 41 | mtbiri | ⊢ ( 𝑥 = 𝑦 → ¬ 𝑦 ∈ 𝑥 ) |
| 43 | 42 | intnanrd | ⊢ ( 𝑥 = 𝑦 → ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 44 | 43 | sps | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 45 | 39 44 | nexd | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 46 | 45 | pm2.21d | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 47 | 38 46 | alrimi | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 48 | 47 | 19.8ad | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 49 | nfae | ⊢ Ⅎ 𝑦 ∀ 𝑥 𝑥 = 𝑧 | |
| 50 | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑧 | |
| 51 | elirrv | ⊢ ¬ 𝑧 ∈ 𝑧 | |
| 52 | elequ1 | ⊢ ( 𝑥 = 𝑧 → ( 𝑥 ∈ 𝑧 ↔ 𝑧 ∈ 𝑧 ) ) | |
| 53 | 51 52 | mtbiri | ⊢ ( 𝑥 = 𝑧 → ¬ 𝑥 ∈ 𝑧 ) |
| 54 | 53 | intnand | ⊢ ( 𝑥 = 𝑧 → ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 55 | 54 | sps | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 56 | 50 55 | nexd | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 57 | 56 | pm2.21d | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 58 | 49 57 | alrimi | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 59 | 58 | 19.8ad | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 60 | 37 48 59 | pm2.61ii | ⊢ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) |