This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. (Contributed by NM, 4-Jan-2002)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axpowndlem1 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm2.24 | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) | |
| 2 | 1 | sps | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |