This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Axiom of Union with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jan-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axunndlem1 | ⊢ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | en2lp | ⊢ ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) | |
| 2 | elequ2 | ⊢ ( 𝑦 = 𝑧 → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧 ) ) | |
| 3 | 2 | anbi2d | ⊢ ( 𝑦 = 𝑧 → ( ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑦 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) ) |
| 4 | 1 3 | mtbii | ⊢ ( 𝑦 = 𝑧 → ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 5 | 4 | sps | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ¬ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 6 | 5 | nexdv | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ¬ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 7 | 6 | pm2.21d | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 8 | 7 | axc4i | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 9 | 8 | 19.8ad | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 10 | zfun | ⊢ ∃ 𝑥 ∀ 𝑤 ( ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) | |
| 11 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 12 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 13 | nfvd | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑤 ∈ 𝑥 ) | |
| 14 | nfcvf | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑧 ) | |
| 15 | 14 | nfcrd | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑥 ∈ 𝑧 ) |
| 16 | 13 15 | nfand | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 17 | 12 16 | nfexd | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) |
| 18 | 17 13 | nfimd | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 ( ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) |
| 19 | elequ1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 20 | 19 | anbi1d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ↔ ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) ) |
| 21 | 20 | exbidv | ⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ↔ ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) ) ) |
| 22 | 21 19 | imbi12d | ⊢ ( 𝑤 = 𝑦 → ( ( ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 23 | 22 | a1i | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( 𝑤 = 𝑦 → ( ( ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
| 24 | 11 18 23 | cbvald | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑤 ( ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 25 | 24 | exbidv | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∃ 𝑥 ∀ 𝑤 ( ∃ 𝑥 ( 𝑤 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 26 | 10 25 | mpbii | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 27 | 9 26 | pm2.61i | ⊢ ∃ 𝑥 ∀ 𝑦 ( ∃ 𝑥 ( 𝑦 ∈ 𝑥 ∧ 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) |