This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Axiom of Replacement with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jan-2002) (Proof shortened by Mario Carneiro, 6-Dec-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axrepndlem2 | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axrepndlem1 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( [ 𝑤 / 𝑥 ] 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ) ) ) ) | |
| 2 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 3 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 | |
| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 5 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 6 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑧 | |
| 7 | 5 6 | nfan | ⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 8 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 9 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑧 | |
| 10 | 8 9 | nfan | ⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 11 | nfs1v | ⊢ Ⅎ 𝑥 [ 𝑤 / 𝑥 ] 𝜑 | |
| 12 | 11 | a1i | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 [ 𝑤 / 𝑥 ] 𝜑 ) |
| 13 | nfcvf | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑧 ) | |
| 14 | 13 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧 ) |
| 15 | nfcvf | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) | |
| 16 | 15 | adantr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 ) |
| 17 | 14 16 | nfeqd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧 = 𝑦 ) |
| 18 | 12 17 | nfimd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( [ 𝑤 / 𝑥 ] 𝜑 → 𝑧 = 𝑦 ) ) |
| 19 | 10 18 | nfald | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∀ 𝑧 ( [ 𝑤 / 𝑥 ] 𝜑 → 𝑧 = 𝑦 ) ) |
| 20 | 7 19 | nfexd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∃ 𝑦 ∀ 𝑧 ( [ 𝑤 / 𝑥 ] 𝜑 → 𝑧 = 𝑦 ) ) |
| 21 | nfcvd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤 ) | |
| 22 | 14 21 | nfeld | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑧 ∈ 𝑤 ) |
| 23 | nfv | ⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) | |
| 24 | 21 16 | nfeld | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑤 ∈ 𝑦 ) |
| 25 | 7 12 | nfald | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ) |
| 26 | 24 25 | nfand | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ) ) |
| 27 | 23 26 | nfexd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ) ) |
| 28 | 22 27 | nfbid | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ) ) ) |
| 29 | 10 28 | nfald | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ) ) ) |
| 30 | 20 29 | nfimd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( [ 𝑤 / 𝑥 ] 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ) ) ) ) |
| 31 | nfcvd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑦 𝑤 ) | |
| 32 | nfcvf2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑥 ) | |
| 33 | 32 | adantr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑦 𝑥 ) |
| 34 | 31 33 | nfeqd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑦 𝑤 = 𝑥 ) |
| 35 | 7 34 | nfan1 | ⊢ Ⅎ 𝑦 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) |
| 36 | nfcvd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑧 𝑤 ) | |
| 37 | nfcvf2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑧 𝑥 ) | |
| 38 | 37 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑧 𝑥 ) |
| 39 | 36 38 | nfeqd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑧 𝑤 = 𝑥 ) |
| 40 | 10 39 | nfan1 | ⊢ Ⅎ 𝑧 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) |
| 41 | sbequ12r | ⊢ ( 𝑤 = 𝑥 → ( [ 𝑤 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) | |
| 42 | 41 | imbi1d | ⊢ ( 𝑤 = 𝑥 → ( ( [ 𝑤 / 𝑥 ] 𝜑 → 𝑧 = 𝑦 ) ↔ ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
| 43 | 42 | adantl | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( [ 𝑤 / 𝑥 ] 𝜑 → 𝑧 = 𝑦 ) ↔ ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
| 44 | 40 43 | albid | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑧 ( [ 𝑤 / 𝑥 ] 𝜑 → 𝑧 = 𝑦 ) ↔ ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
| 45 | 35 44 | exbid | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∃ 𝑦 ∀ 𝑧 ( [ 𝑤 / 𝑥 ] 𝜑 → 𝑧 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
| 46 | elequ2 | ⊢ ( 𝑤 = 𝑥 → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑥 ) ) | |
| 47 | 46 | adantl | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑥 ) ) |
| 48 | elequ1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) | |
| 49 | 48 | adantl | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( 𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) |
| 50 | 41 | adantl | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( [ 𝑤 / 𝑥 ] 𝜑 ↔ 𝜑 ) ) |
| 51 | 35 50 | albid | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ↔ ∀ 𝑦 𝜑 ) ) |
| 52 | 49 51 | anbi12d | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 53 | 52 | ex | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 54 | 4 26 53 | cbvexd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 55 | 54 | adantr | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 56 | 47 55 | bibi12d | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 57 | 40 56 | albid | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 58 | 45 57 | imbi12d | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( ∃ 𝑦 ∀ 𝑧 ( [ 𝑤 / 𝑥 ] 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ) ) ) ↔ ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) |
| 59 | 58 | ex | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( ∃ 𝑦 ∀ 𝑧 ( [ 𝑤 / 𝑥 ] 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ) ) ) ↔ ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) ) |
| 60 | 4 30 59 | cbvexd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( [ 𝑤 / 𝑥 ] 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑥 ] 𝜑 ) ) ) ↔ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) |
| 61 | 1 60 | imbitrid | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) |
| 62 | 61 | imp | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |