This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A version of the Axiom of Replacement with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jan-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axrepnd | ⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axrepndlem2 | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) | |
| 2 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 3 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 | |
| 4 | 2 3 | nfan | ⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 5 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 6 | 4 5 | nfan | ⊢ Ⅎ 𝑥 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 7 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 8 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑧 | |
| 9 | 7 8 | nfan | ⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 10 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 11 | 9 10 | nfan | ⊢ Ⅎ 𝑧 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 12 | nfcvf | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑧 ) | |
| 13 | 12 | adantl | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑧 ) |
| 14 | nfcvf2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑥 ) | |
| 15 | 14 | ad2antrr | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 ) |
| 16 | 13 15 | nfeld | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑧 ∈ 𝑥 ) |
| 17 | 16 | nf5rd | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑧 ∈ 𝑥 → ∀ 𝑦 𝑧 ∈ 𝑥 ) ) |
| 18 | sp | ⊢ ( ∀ 𝑦 𝑧 ∈ 𝑥 → 𝑧 ∈ 𝑥 ) | |
| 19 | 17 18 | impbid1 | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑧 ∈ 𝑥 ↔ ∀ 𝑦 𝑧 ∈ 𝑥 ) ) |
| 20 | nfcvf2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑧 𝑥 ) | |
| 21 | 20 | ad2antlr | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑥 ) |
| 22 | nfcvf2 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑦 ) | |
| 23 | 22 | adantl | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑦 ) |
| 24 | 21 23 | nfeld | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑥 ∈ 𝑦 ) |
| 25 | 24 | nf5rd | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑥 ∈ 𝑦 → ∀ 𝑧 𝑥 ∈ 𝑦 ) ) |
| 26 | sp | ⊢ ( ∀ 𝑧 𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑦 ) | |
| 27 | 25 26 | impbid1 | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑥 ∈ 𝑦 ↔ ∀ 𝑧 𝑥 ∈ 𝑦 ) ) |
| 28 | 27 | anbi1d | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ↔ ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 29 | 6 28 | exbid | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 30 | 19 29 | bibi12d | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 31 | 11 30 | albid | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 32 | 31 | imbi2d | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ↔ ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) |
| 33 | 6 32 | exbid | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ↔ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) |
| 34 | 1 33 | mpbid | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 35 | 34 | exp31 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) ) |
| 36 | nfae | ⊢ Ⅎ 𝑧 ∀ 𝑥 𝑥 = 𝑦 | |
| 37 | nd2 | ⊢ ( ∀ 𝑦 𝑦 = 𝑥 → ¬ ∀ 𝑦 𝑧 ∈ 𝑥 ) | |
| 38 | 37 | aecoms | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑦 𝑧 ∈ 𝑥 ) |
| 39 | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑦 | |
| 40 | nd3 | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∀ 𝑧 𝑥 ∈ 𝑦 ) | |
| 41 | 40 | intnanrd | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) |
| 42 | 39 41 | nexd | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ¬ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) |
| 43 | 38 42 | 2falsed | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 44 | 36 43 | alrimi | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 45 | 44 | a1d | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 46 | 45 | 19.8ad | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 47 | nfae | ⊢ Ⅎ 𝑧 ∀ 𝑥 𝑥 = 𝑧 | |
| 48 | nd4 | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ∀ 𝑦 𝑧 ∈ 𝑥 ) | |
| 49 | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑧 | |
| 50 | nd1 | ⊢ ( ∀ 𝑧 𝑧 = 𝑥 → ¬ ∀ 𝑧 𝑥 ∈ 𝑦 ) | |
| 51 | 50 | aecoms | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ∀ 𝑧 𝑥 ∈ 𝑦 ) |
| 52 | 51 | intnanrd | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) |
| 53 | 49 52 | nexd | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) |
| 54 | 48 53 | 2falsed | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 55 | 47 54 | alrimi | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 56 | 55 | a1d | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 57 | 56 | 19.8ad | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 58 | nfae | ⊢ Ⅎ 𝑧 ∀ 𝑦 𝑦 = 𝑧 | |
| 59 | nd1 | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ¬ ∀ 𝑦 𝑧 ∈ 𝑥 ) | |
| 60 | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑦 𝑦 = 𝑧 | |
| 61 | nd2 | ⊢ ( ∀ 𝑧 𝑧 = 𝑦 → ¬ ∀ 𝑧 𝑥 ∈ 𝑦 ) | |
| 62 | 61 | aecoms | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ¬ ∀ 𝑧 𝑥 ∈ 𝑦 ) |
| 63 | 62 | intnanrd | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ¬ ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) |
| 64 | 60 63 | nexd | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ¬ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) |
| 65 | 59 64 | 2falsed | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 66 | 58 65 | alrimi | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 67 | 66 | a1d | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 68 | 67 | 19.8ad | ⊢ ( ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 69 | 35 46 57 68 | pm2.61iii | ⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( ∀ 𝑧 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |