This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Axiom of Replacement with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 2-Jan-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axrepndlem1 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axrep2 | ⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑤 ( [ 𝑤 / 𝑧 ] 𝜑 → 𝑤 = 𝑦 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) ) | |
| 2 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 3 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 4 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 5 | nfs1v | ⊢ Ⅎ 𝑧 [ 𝑤 / 𝑧 ] 𝜑 | |
| 6 | 5 | a1i | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 [ 𝑤 / 𝑧 ] 𝜑 ) |
| 7 | nfcvd | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑤 ) | |
| 8 | nfcvf2 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑦 ) | |
| 9 | 7 8 | nfeqd | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑤 = 𝑦 ) |
| 10 | 6 9 | nfimd | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 ( [ 𝑤 / 𝑧 ] 𝜑 → 𝑤 = 𝑦 ) ) |
| 11 | sbequ12r | ⊢ ( 𝑤 = 𝑧 → ( [ 𝑤 / 𝑧 ] 𝜑 ↔ 𝜑 ) ) | |
| 12 | equequ1 | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 = 𝑦 ↔ 𝑧 = 𝑦 ) ) | |
| 13 | 11 12 | imbi12d | ⊢ ( 𝑤 = 𝑧 → ( ( [ 𝑤 / 𝑧 ] 𝜑 → 𝑤 = 𝑦 ) ↔ ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
| 14 | 13 | a1i | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( 𝑤 = 𝑧 → ( ( [ 𝑤 / 𝑧 ] 𝜑 → 𝑤 = 𝑦 ) ↔ ( 𝜑 → 𝑧 = 𝑦 ) ) ) ) |
| 15 | 4 10 14 | cbvald | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑤 ( [ 𝑤 / 𝑧 ] 𝜑 → 𝑤 = 𝑦 ) ↔ ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
| 16 | 3 15 | exbid | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∃ 𝑦 ∀ 𝑤 ( [ 𝑤 / 𝑧 ] 𝜑 → 𝑤 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) ) |
| 17 | nfvd | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑤 ∈ 𝑥 ) | |
| 18 | 8 | nfcrd | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑥 ∈ 𝑦 ) |
| 19 | 3 6 | nfald | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) |
| 20 | 18 19 | nfand | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) |
| 21 | 2 20 | nfexd | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) |
| 22 | 17 21 | nfbid | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 ( 𝑤 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) ) |
| 23 | elequ1 | ⊢ ( 𝑤 = 𝑧 → ( 𝑤 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) | |
| 24 | 23 | adantl | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧 ) → ( 𝑤 ∈ 𝑥 ↔ 𝑧 ∈ 𝑥 ) ) |
| 25 | nfeqf2 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑤 = 𝑧 ) | |
| 26 | 3 25 | nfan1 | ⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧 ) |
| 27 | 11 | adantl | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧 ) → ( [ 𝑤 / 𝑧 ] 𝜑 ↔ 𝜑 ) ) |
| 28 | 26 27 | albid | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧 ) → ( ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ↔ ∀ 𝑦 𝜑 ) ) |
| 29 | 28 | anbi2d | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧 ) → ( ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ↔ ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 30 | 29 | exbidv | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧 ) → ( ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 31 | 24 30 | bibi12d | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑧 ∧ 𝑤 = 𝑧 ) → ( ( 𝑤 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 32 | 31 | ex | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( 𝑤 = 𝑧 → ( ( 𝑤 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) |
| 33 | 4 22 32 | cbvald | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 34 | 16 33 | imbi12d | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ( ∃ 𝑦 ∀ 𝑤 ( [ 𝑤 / 𝑧 ] 𝜑 → 𝑤 = 𝑦 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) ) ↔ ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) |
| 35 | 2 34 | exbid | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑤 ( [ 𝑤 / 𝑧 ] 𝜑 → 𝑤 = 𝑦 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 [ 𝑤 / 𝑧 ] 𝜑 ) ) ) ↔ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) |
| 36 | 1 35 | mpbii | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |