This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The version of the Axiom of Replacement used in the Metamath Solitaire applet https://us.metamath.org/mmsolitaire/mms.html . Equivalence is shown via the path ax-rep -> axrep1 -> axrep2 -> axrepnd -> zfcndrep = ax-rep . (Contributed by NM, 19-Nov-2005) (Proof shortened by Mario Carneiro, 17-Nov-2016) Remove dependency on ax-13 . (Revised by BJ, 31-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axrep1 | ⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦 ) ) | |
| 2 | 1 | anbi1d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ↔ ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) |
| 3 | 2 | exbidv | ⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) |
| 4 | 3 | bibi2d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) ) |
| 5 | 4 | albidv | ⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) ) |
| 6 | 5 | exbidv | ⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑥 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ↔ ∃ 𝑥 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) ) |
| 7 | 6 | imbi2d | ⊢ ( 𝑤 = 𝑦 → ( ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∃ 𝑥 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) ↔ ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∃ 𝑥 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) ) ) |
| 8 | ax-rep | ⊢ ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) ) | |
| 9 | 19.3v | ⊢ ( ∀ 𝑦 𝜑 ↔ 𝜑 ) | |
| 10 | 9 | imbi1i | ⊢ ( ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ↔ ( 𝜑 → 𝑧 = 𝑦 ) ) |
| 11 | 10 | albii | ⊢ ( ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ↔ ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) |
| 12 | 11 | exbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) |
| 13 | 12 | albii | ⊢ ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ↔ ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) ) |
| 14 | nfv | ⊢ Ⅎ 𝑥 𝑧 ∈ 𝑦 | |
| 15 | nfe1 | ⊢ Ⅎ 𝑥 ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) | |
| 16 | 14 15 | nfbi | ⊢ Ⅎ 𝑥 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) |
| 17 | 16 | nfal | ⊢ Ⅎ 𝑥 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) |
| 18 | nfv | ⊢ Ⅎ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) | |
| 19 | elequ2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑥 ) ) | |
| 20 | 9 | anbi2i | ⊢ ( ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ↔ ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) |
| 21 | 20 | exbii | ⊢ ( ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) |
| 22 | 21 | a1i | ⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) |
| 23 | 19 22 | bibi12d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) ) |
| 24 | 23 | albidv | ⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) ) |
| 25 | 17 18 24 | cbvexv1 | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) ↔ ∃ 𝑥 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) |
| 26 | 8 13 25 | 3imtr3i | ⊢ ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∃ 𝑥 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ 𝜑 ) ) ) |
| 27 | 7 26 | chvarvv | ⊢ ( ∀ 𝑥 ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∃ 𝑥 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) |
| 28 | 27 | 19.35ri | ⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ 𝜑 ) ) ) |