This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Axiom of Replacement expressed with the fewest number of different variables and without any restrictions on ph . (Contributed by NM, 15-Aug-2003) Remove dependency on ax-13 . (Revised by BJ, 31-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axrep2 | ⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 | ⊢ Ⅎ 𝑤 ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑤 ) | |
| 2 | nfv | ⊢ Ⅎ 𝑤 ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) | |
| 3 | 1 2 | nfim | ⊢ Ⅎ 𝑤 ( ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑤 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 4 | 3 | nfex | ⊢ Ⅎ 𝑤 ∃ 𝑥 ( ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑤 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 5 | axreplem | ⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑥 ( ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑤 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) ) ↔ ∃ 𝑥 ( ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑤 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) ) | |
| 6 | axrep1 | ⊢ ∃ 𝑥 ( ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑤 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑤 ∧ ∀ 𝑦 𝜑 ) ) ) | |
| 7 | 4 5 6 | chvarfv | ⊢ ∃ 𝑥 ( ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑤 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 8 | sp | ⊢ ( ∀ 𝑦 𝜑 → 𝜑 ) | |
| 9 | 8 | imim1i | ⊢ ( ( 𝜑 → 𝑧 = 𝑦 ) → ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ) |
| 10 | 9 | alimi | ⊢ ( ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ) |
| 11 | 10 | eximi | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ) |
| 12 | nfv | ⊢ Ⅎ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) | |
| 13 | nfa1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 𝜑 | |
| 14 | nfv | ⊢ Ⅎ 𝑦 𝑧 = 𝑤 | |
| 15 | 13 14 | nfim | ⊢ Ⅎ 𝑦 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑤 ) |
| 16 | 15 | nfal | ⊢ Ⅎ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑤 ) |
| 17 | equequ2 | ⊢ ( 𝑦 = 𝑤 → ( 𝑧 = 𝑦 ↔ 𝑧 = 𝑤 ) ) | |
| 18 | 17 | imbi2d | ⊢ ( 𝑦 = 𝑤 → ( ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ↔ ( ∀ 𝑦 𝜑 → 𝑧 = 𝑤 ) ) ) |
| 19 | 18 | albidv | ⊢ ( 𝑦 = 𝑤 → ( ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ↔ ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑤 ) ) ) |
| 20 | 12 16 19 | cbvexv1 | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) ↔ ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑤 ) ) |
| 21 | 11 20 | sylib | ⊢ ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑤 ) ) |
| 22 | 21 | imim1i | ⊢ ( ( ∃ 𝑤 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑤 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) → ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 23 | 7 22 | eximii | ⊢ ∃ 𝑥 ( ∃ 𝑦 ∀ 𝑧 ( 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑥 ↔ ∃ 𝑥 ( 𝑥 ∈ 𝑦 ∧ ∀ 𝑦 𝜑 ) ) ) |