This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axrep2 and axrep3 . (Contributed by BJ, 6-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axreplem | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑢 ( 𝜑 → ∀ 𝑣 ( 𝜓 ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑥 ∧ 𝜒 ) ) ) ↔ ∃ 𝑢 ( 𝜑 → ∀ 𝑣 ( 𝜓 ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑦 ∧ 𝜒 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elequ2 | ⊢ ( 𝑥 = 𝑦 → ( 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) | |
| 2 | 1 | anbi1d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑧 ∈ 𝑥 ∧ 𝜒 ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝜒 ) ) ) |
| 3 | 2 | exbidv | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑤 ( 𝑧 ∈ 𝑥 ∧ 𝜒 ) ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑦 ∧ 𝜒 ) ) ) |
| 4 | 3 | bibi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜓 ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑥 ∧ 𝜒 ) ) ↔ ( 𝜓 ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑦 ∧ 𝜒 ) ) ) ) |
| 5 | 4 | albidv | ⊢ ( 𝑥 = 𝑦 → ( ∀ 𝑣 ( 𝜓 ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑥 ∧ 𝜒 ) ) ↔ ∀ 𝑣 ( 𝜓 ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑦 ∧ 𝜒 ) ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ∀ 𝑣 ( 𝜓 ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑥 ∧ 𝜒 ) ) ) ↔ ( 𝜑 → ∀ 𝑣 ( 𝜓 ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑦 ∧ 𝜒 ) ) ) ) ) |
| 7 | 6 | exbidv | ⊢ ( 𝑥 = 𝑦 → ( ∃ 𝑢 ( 𝜑 → ∀ 𝑣 ( 𝜓 ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑥 ∧ 𝜒 ) ) ) ↔ ∃ 𝑢 ( 𝜑 → ∀ 𝑣 ( 𝜓 ↔ ∃ 𝑤 ( 𝑧 ∈ 𝑦 ∧ 𝜒 ) ) ) ) ) |