This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Axiom of Replacement ax-rep , reproved from conditionless ZFC axioms. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 15-Aug-2003) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | zfcndrep | ⊢ ( ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 | ⊢ Ⅎ 𝑦 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) | |
| 2 | nfv | ⊢ Ⅎ 𝑦 𝑧 ∈ 𝑤 | |
| 3 | nfv | ⊢ Ⅎ 𝑦 𝑤 ∈ 𝑥 | |
| 4 | nfa1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 ∀ 𝑦 𝜑 | |
| 5 | 3 4 | nfan | ⊢ Ⅎ 𝑦 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) |
| 6 | 5 | nfex | ⊢ Ⅎ 𝑦 ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) |
| 7 | 2 6 | nfbi | ⊢ Ⅎ 𝑦 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) |
| 8 | 7 | nfal | ⊢ Ⅎ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) |
| 9 | 1 8 | nfim | ⊢ Ⅎ 𝑦 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 10 | 9 | nfex | ⊢ Ⅎ 𝑦 ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 11 | elequ2 | ⊢ ( 𝑦 = 𝑥 → ( 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑥 ) ) | |
| 12 | 11 | anbi1d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ↔ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 13 | 12 | exbidv | ⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 14 | 13 | bibi2d | ⊢ ( 𝑦 = 𝑥 → ( ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ) |
| 15 | 14 | albidv | ⊢ ( 𝑦 = 𝑥 → ( ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑦 = 𝑥 → ( ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ↔ ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ) ) |
| 17 | 16 | exbidv | ⊢ ( 𝑦 = 𝑥 → ( ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ↔ ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ) ) |
| 18 | axrepnd | ⊢ ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( ∀ 𝑧 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) | |
| 19 | 19.3v | ⊢ ( ∀ 𝑦 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑤 ) | |
| 20 | 19.3v | ⊢ ( ∀ 𝑧 𝑤 ∈ 𝑦 ↔ 𝑤 ∈ 𝑦 ) | |
| 21 | 20 | anbi1i | ⊢ ( ( ∀ 𝑧 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ↔ ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) |
| 22 | 21 | exbii | ⊢ ( ∃ 𝑤 ( ∀ 𝑧 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) |
| 23 | 19 22 | bibi12i | ⊢ ( ( ∀ 𝑦 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( ∀ 𝑧 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 24 | 23 | albii | ⊢ ( ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( ∀ 𝑧 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 25 | 24 | imbi2i | ⊢ ( ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( ∀ 𝑧 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ↔ ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ) |
| 26 | 25 | exbii | ⊢ ( ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( ∀ 𝑦 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( ∀ 𝑧 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ↔ ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) ) |
| 27 | 18 26 | mpbi | ⊢ ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑦 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 28 | 10 17 27 | chvar | ⊢ ∃ 𝑤 ( ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 29 | 28 | 19.35i | ⊢ ( ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∃ 𝑤 ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ) |
| 30 | nfv | ⊢ Ⅎ 𝑤 𝑧 ∈ 𝑦 | |
| 31 | nfe1 | ⊢ Ⅎ 𝑤 ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) | |
| 32 | 30 31 | nfbi | ⊢ Ⅎ 𝑤 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) |
| 33 | 32 | nfal | ⊢ Ⅎ 𝑤 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) |
| 34 | elequ2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑧 ∈ 𝑤 ↔ 𝑧 ∈ 𝑦 ) ) | |
| 35 | nfa1 | ⊢ Ⅎ 𝑦 ∀ 𝑦 𝜑 | |
| 36 | 35 | 19.3 | ⊢ ( ∀ 𝑦 ∀ 𝑦 𝜑 ↔ ∀ 𝑦 𝜑 ) |
| 37 | 36 | anbi2i | ⊢ ( ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ↔ ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) |
| 38 | 37 | exbii | ⊢ ( ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) |
| 39 | 38 | a1i | ⊢ ( 𝑤 = 𝑦 → ( ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 40 | 34 39 | bibi12d | ⊢ ( 𝑤 = 𝑦 → ( ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ↔ ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 41 | 40 | albidv | ⊢ ( 𝑤 = 𝑦 → ( ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ↔ ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) ) |
| 42 | 8 33 41 | cbvexv1 | ⊢ ( ∃ 𝑤 ∀ 𝑧 ( 𝑧 ∈ 𝑤 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 ∀ 𝑦 𝜑 ) ) ↔ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |
| 43 | 29 42 | sylib | ⊢ ( ∀ 𝑤 ∃ 𝑦 ∀ 𝑧 ( ∀ 𝑦 𝜑 → 𝑧 = 𝑦 ) → ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ∃ 𝑤 ( 𝑤 ∈ 𝑥 ∧ ∀ 𝑦 𝜑 ) ) ) |