This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 4-Jan-2002) (Revised by Mario Carneiro, 10-Dec-2016) (Proof shortened by Wolf Lammen, 10-Jun-2019) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axpowndlem3 | ⊢ ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp | ⊢ ( ∀ 𝑥 𝑥 = 𝑦 → 𝑥 = 𝑦 ) | |
| 2 | p0ex | ⊢ { ∅ } ∈ V | |
| 3 | eleq2 | ⊢ ( 𝑥 = { ∅ } → ( 𝑤 ∈ 𝑥 ↔ 𝑤 ∈ { ∅ } ) ) | |
| 4 | 3 | imbi2d | ⊢ ( 𝑥 = { ∅ } → ( ( 𝑤 = ∅ → 𝑤 ∈ 𝑥 ) ↔ ( 𝑤 = ∅ → 𝑤 ∈ { ∅ } ) ) ) |
| 5 | 4 | albidv | ⊢ ( 𝑥 = { ∅ } → ( ∀ 𝑤 ( 𝑤 = ∅ → 𝑤 ∈ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 = ∅ → 𝑤 ∈ { ∅ } ) ) ) |
| 6 | 2 5 | spcev | ⊢ ( ∀ 𝑤 ( 𝑤 = ∅ → 𝑤 ∈ { ∅ } ) → ∃ 𝑥 ∀ 𝑤 ( 𝑤 = ∅ → 𝑤 ∈ 𝑥 ) ) |
| 7 | 0ex | ⊢ ∅ ∈ V | |
| 8 | 7 | snid | ⊢ ∅ ∈ { ∅ } |
| 9 | eleq1 | ⊢ ( 𝑤 = ∅ → ( 𝑤 ∈ { ∅ } ↔ ∅ ∈ { ∅ } ) ) | |
| 10 | 8 9 | mpbiri | ⊢ ( 𝑤 = ∅ → 𝑤 ∈ { ∅ } ) |
| 11 | 6 10 | mpg | ⊢ ∃ 𝑥 ∀ 𝑤 ( 𝑤 = ∅ → 𝑤 ∈ 𝑥 ) |
| 12 | neq0 | ⊢ ( ¬ 𝑤 = ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝑤 ) | |
| 13 | 12 | con1bii | ⊢ ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 ↔ 𝑤 = ∅ ) |
| 14 | 13 | imbi1i | ⊢ ( ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) ↔ ( 𝑤 = ∅ → 𝑤 ∈ 𝑥 ) ) |
| 15 | 14 | albii | ⊢ ( ∀ 𝑤 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) ↔ ∀ 𝑤 ( 𝑤 = ∅ → 𝑤 ∈ 𝑥 ) ) |
| 16 | 15 | exbii | ⊢ ( ∃ 𝑥 ∀ 𝑤 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) ↔ ∃ 𝑥 ∀ 𝑤 ( 𝑤 = ∅ → 𝑤 ∈ 𝑥 ) ) |
| 17 | 11 16 | mpbir | ⊢ ∃ 𝑥 ∀ 𝑤 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) |
| 18 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 19 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 20 | nfcvf2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑥 ) | |
| 21 | nfcvd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑤 ) | |
| 22 | 20 21 | nfeld | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑥 ∈ 𝑤 ) |
| 23 | 18 22 | nfexd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 ∃ 𝑥 𝑥 ∈ 𝑤 ) |
| 24 | 23 | nfnd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 ¬ ∃ 𝑥 𝑥 ∈ 𝑤 ) |
| 25 | 21 20 | nfeld | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑤 ∈ 𝑥 ) |
| 26 | 24 25 | nfimd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) ) |
| 27 | nfeqf2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑤 = 𝑦 ) | |
| 28 | 18 27 | nfan1 | ⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) |
| 29 | elequ2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦 ) ) | |
| 30 | 29 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦 ) ) |
| 31 | 28 30 | exbid | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑥 𝑥 ∈ 𝑤 ↔ ∃ 𝑥 𝑥 ∈ 𝑦 ) ) |
| 32 | 31 | notbid | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 ↔ ¬ ∃ 𝑥 𝑥 ∈ 𝑦 ) ) |
| 33 | elequ1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 34 | 33 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
| 35 | 32 34 | imbi12d | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑦 ) → ( ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) ↔ ( ¬ ∃ 𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) ) ) |
| 36 | 35 | ex | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( 𝑤 = 𝑦 → ( ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) ↔ ( ¬ ∃ 𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) ) ) ) |
| 37 | 19 26 36 | cbvald | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑤 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) ) ) |
| 38 | 18 37 | exbid | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∃ 𝑥 ∀ 𝑤 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑤 → 𝑤 ∈ 𝑥 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) ) ) |
| 39 | 17 38 | mpbii | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) ) |
| 40 | nfae | ⊢ Ⅎ 𝑥 ∀ 𝑥 𝑥 = 𝑧 | |
| 41 | nfae | ⊢ Ⅎ 𝑦 ∀ 𝑥 𝑥 = 𝑧 | |
| 42 | axc11r | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑧 ¬ 𝑥 ∈ 𝑦 → ∀ 𝑥 ¬ 𝑥 ∈ 𝑦 ) ) | |
| 43 | alnex | ⊢ ( ∀ 𝑧 ¬ 𝑥 ∈ 𝑦 ↔ ¬ ∃ 𝑧 𝑥 ∈ 𝑦 ) | |
| 44 | alnex | ⊢ ( ∀ 𝑥 ¬ 𝑥 ∈ 𝑦 ↔ ¬ ∃ 𝑥 𝑥 ∈ 𝑦 ) | |
| 45 | 42 43 44 | 3imtr3g | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ¬ ∃ 𝑧 𝑥 ∈ 𝑦 → ¬ ∃ 𝑥 𝑥 ∈ 𝑦 ) ) |
| 46 | nd3 | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ¬ ∀ 𝑦 𝑥 ∈ 𝑧 ) | |
| 47 | 46 | pm2.21d | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑦 𝑥 ∈ 𝑧 → ¬ ∃ 𝑥 𝑥 ∈ 𝑦 ) ) |
| 48 | 45 47 | jad | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → ¬ ∃ 𝑥 𝑥 ∈ 𝑦 ) ) |
| 49 | 48 | spsd | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → ¬ ∃ 𝑥 𝑥 ∈ 𝑦 ) ) |
| 50 | 49 | imim1d | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ( ¬ ∃ 𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) → ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 51 | 41 50 | alimd | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∀ 𝑦 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) → ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 52 | 40 51 | eximd | ⊢ ( ∀ 𝑥 𝑥 = 𝑧 → ( ∃ 𝑥 ∀ 𝑦 ( ¬ ∃ 𝑥 𝑥 ∈ 𝑦 → 𝑦 ∈ 𝑥 ) → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 53 | 39 52 | syl5com | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 54 | axpowndlem2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) | |
| 55 | 53 54 | pm2.61d | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 56 | 1 55 | nsyl5 | ⊢ ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |