This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 4-Jan-2002) (Proof shortened by Mario Carneiro, 10-Dec-2016) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axpowndlem4 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axpowndlem3 | ⊢ ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) | |
| 2 | 1 | ax-gen | ⊢ ∀ 𝑤 ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) |
| 3 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑥 | |
| 4 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 5 | 3 4 | nfan | ⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 6 | nfcvf | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑥 ) | |
| 7 | 6 | adantr | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 ) |
| 8 | nfcvd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤 ) | |
| 9 | 7 8 | nfeqd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 = 𝑤 ) |
| 10 | 9 | nfnd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ¬ 𝑥 = 𝑤 ) |
| 11 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑥 | |
| 12 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 13 | 11 12 | nfan | ⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 14 | nfv | ⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) | |
| 15 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑥 | |
| 16 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑦 𝑦 = 𝑧 | |
| 17 | 15 16 | nfan | ⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) |
| 18 | 7 8 | nfeld | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 ∈ 𝑤 ) |
| 19 | 17 18 | nfexd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∃ 𝑧 𝑥 ∈ 𝑤 ) |
| 20 | nfcvf | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑦 𝑧 ) | |
| 21 | 20 | adantl | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑧 ) |
| 22 | 7 21 | nfeld | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑥 ∈ 𝑧 ) |
| 23 | 14 22 | nfald | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∀ 𝑤 𝑥 ∈ 𝑧 ) |
| 24 | 19 23 | nfimd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) ) |
| 25 | 13 24 | nfald | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) ) |
| 26 | 8 7 | nfeld | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 𝑤 ∈ 𝑥 ) |
| 27 | 25 26 | nfimd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) |
| 28 | 14 27 | nfald | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) |
| 29 | 13 28 | nfexd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) |
| 30 | 10 29 | nfimd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑦 ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) ) |
| 31 | equequ2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑥 = 𝑤 ↔ 𝑥 = 𝑦 ) ) | |
| 32 | 31 | notbid | ⊢ ( 𝑤 = 𝑦 → ( ¬ 𝑥 = 𝑤 ↔ ¬ 𝑥 = 𝑦 ) ) |
| 33 | 32 | adantl | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ¬ 𝑥 = 𝑤 ↔ ¬ 𝑥 = 𝑦 ) ) |
| 34 | nfcvd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑤 ) | |
| 35 | nfcvf2 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑥 𝑦 ) | |
| 36 | 35 | adantr | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑦 ) |
| 37 | 34 36 | nfeqd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑥 𝑤 = 𝑦 ) |
| 38 | 13 37 | nfan1 | ⊢ Ⅎ 𝑥 ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) |
| 39 | nfcvd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑤 ) | |
| 40 | nfcvf2 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑧 → Ⅎ 𝑧 𝑦 ) | |
| 41 | 40 | adantl | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑦 ) |
| 42 | 39 41 | nfeqd | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → Ⅎ 𝑧 𝑤 = 𝑦 ) |
| 43 | 17 42 | nfan1 | ⊢ Ⅎ 𝑧 ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) |
| 44 | elequ2 | ⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦 ) ) | |
| 45 | 44 | adantl | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( 𝑥 ∈ 𝑤 ↔ 𝑥 ∈ 𝑦 ) ) |
| 46 | 43 45 | exbid | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑧 𝑥 ∈ 𝑤 ↔ ∃ 𝑧 𝑥 ∈ 𝑦 ) ) |
| 47 | biidd | ⊢ ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) | |
| 48 | 47 | a1i | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( 𝑥 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) ) |
| 49 | 5 22 48 | cbvald | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 𝑥 ∈ 𝑧 ↔ ∀ 𝑦 𝑥 ∈ 𝑧 ) ) |
| 50 | 49 | adantr | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑤 𝑥 ∈ 𝑧 ↔ ∀ 𝑦 𝑥 ∈ 𝑧 ) ) |
| 51 | 46 50 | imbi12d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) ↔ ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) |
| 52 | 38 51 | albid | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) ↔ ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) |
| 53 | elequ1 | ⊢ ( 𝑤 = 𝑦 → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 54 | 53 | adantl | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( 𝑤 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) |
| 55 | 52 54 | imbi12d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 56 | 55 | ex | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
| 57 | 5 27 56 | cbvald | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 58 | 13 57 | exbid | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 59 | 58 | adantr | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 60 | 33 59 | imbi12d | ⊢ ( ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) ∧ 𝑤 = 𝑦 ) → ( ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) ↔ ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
| 61 | 60 | ex | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( 𝑤 = 𝑦 → ( ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) ↔ ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) ) |
| 62 | 5 30 61 | cbvald | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ∀ 𝑤 ( ¬ 𝑥 = 𝑤 → ∃ 𝑥 ∀ 𝑤 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑤 → ∀ 𝑤 𝑥 ∈ 𝑧 ) → 𝑤 ∈ 𝑥 ) ) ↔ ∀ 𝑦 ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
| 63 | 2 62 | mpbii | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ∀ 𝑦 ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 64 | 63 | 19.21bi | ⊢ ( ( ¬ ∀ 𝑦 𝑦 = 𝑥 ∧ ¬ ∀ 𝑦 𝑦 = 𝑧 ) → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 65 | 64 | ex | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → ( ¬ ∀ 𝑦 𝑦 = 𝑧 → ( ¬ 𝑥 = 𝑦 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |