This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for the Axiom of Power Sets with no distinct variable conditions. Revised to remove a redundant antecedent from the consequence. Usage of this theorem is discouraged because it depends on ax-13 . (Contributed by NM, 4-Jan-2002) (Proof shortened by Mario Carneiro, 6-Dec-2016) (Revised and shortened by Wolf Lammen, 9-Jun-2019.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | axpowndlem2 | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zfpow | ⊢ ∃ 𝑤 ∀ 𝑦 ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) | |
| 2 | 19.8a | ⊢ ( 𝑤 ∈ 𝑦 → ∃ 𝑧 𝑤 ∈ 𝑦 ) | |
| 3 | sp | ⊢ ( ∀ 𝑦 𝑤 ∈ 𝑧 → 𝑤 ∈ 𝑧 ) | |
| 4 | 2 3 | imim12i | ⊢ ( ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧 ) ) |
| 5 | 4 | alimi | ⊢ ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → ∀ 𝑤 ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧 ) ) |
| 6 | 5 | imim1i | ⊢ ( ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) → ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ) |
| 7 | 6 | alimi | ⊢ ( ∀ 𝑦 ( ∀ 𝑤 ( 𝑤 ∈ 𝑦 → 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) → ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ) |
| 8 | 1 7 | eximii | ⊢ ∃ 𝑤 ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) |
| 9 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 10 | nfnae | ⊢ Ⅎ 𝑥 ¬ ∀ 𝑥 𝑥 = 𝑧 | |
| 11 | 9 10 | nfan | ⊢ Ⅎ 𝑥 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 12 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 13 | nfnae | ⊢ Ⅎ 𝑦 ¬ ∀ 𝑥 𝑥 = 𝑧 | |
| 14 | 12 13 | nfan | ⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) |
| 15 | nfv | ⊢ Ⅎ 𝑤 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) | |
| 16 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑦 | |
| 17 | nfcvd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑤 ) | |
| 18 | nfcvf | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ) | |
| 19 | 17 18 | nfeld | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑤 ∈ 𝑦 ) |
| 20 | 16 19 | nfexd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 ∃ 𝑧 𝑤 ∈ 𝑦 ) |
| 21 | 20 | adantr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∃ 𝑧 𝑤 ∈ 𝑦 ) |
| 22 | nfcvd | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑤 ) | |
| 23 | nfcvf | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑧 ) | |
| 24 | 22 23 | nfeld | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 𝑤 ∈ 𝑧 ) |
| 25 | 13 24 | nfald | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑥 ∀ 𝑦 𝑤 ∈ 𝑧 ) |
| 26 | 25 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∀ 𝑦 𝑤 ∈ 𝑧 ) |
| 27 | 21 26 | nfimd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) ) |
| 28 | 15 27 | nfald | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) ) |
| 29 | 18 17 | nfeld | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑥 𝑦 ∈ 𝑤 ) |
| 30 | 29 | adantr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 𝑦 ∈ 𝑤 ) |
| 31 | 28 30 | nfimd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ) |
| 32 | 14 31 | nfald | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑥 ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ) |
| 33 | nfeqf2 | ⊢ ( ¬ ∀ 𝑦 𝑦 = 𝑥 → Ⅎ 𝑦 𝑤 = 𝑥 ) | |
| 34 | 33 | naecoms | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → Ⅎ 𝑦 𝑤 = 𝑥 ) |
| 35 | 34 | adantr | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → Ⅎ 𝑦 𝑤 = 𝑥 ) |
| 36 | 14 35 | nfan1 | ⊢ Ⅎ 𝑦 ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) |
| 37 | nfnae | ⊢ Ⅎ 𝑧 ¬ ∀ 𝑥 𝑥 = 𝑧 | |
| 38 | nfeqf2 | ⊢ ( ¬ ∀ 𝑧 𝑧 = 𝑥 → Ⅎ 𝑧 𝑤 = 𝑥 ) | |
| 39 | 38 | naecoms | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑧 → Ⅎ 𝑧 𝑤 = 𝑥 ) |
| 40 | 37 39 | nfan1 | ⊢ Ⅎ 𝑧 ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ 𝑤 = 𝑥 ) |
| 41 | elequ1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) | |
| 42 | 41 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ 𝑤 = 𝑥 ) → ( 𝑤 ∈ 𝑦 ↔ 𝑥 ∈ 𝑦 ) ) |
| 43 | 40 42 | exbid | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑧 ∧ 𝑤 = 𝑥 ) → ( ∃ 𝑧 𝑤 ∈ 𝑦 ↔ ∃ 𝑧 𝑥 ∈ 𝑦 ) ) |
| 44 | 43 | adantll | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∃ 𝑧 𝑤 ∈ 𝑦 ↔ ∃ 𝑧 𝑥 ∈ 𝑦 ) ) |
| 45 | 12 34 | nfan1 | ⊢ Ⅎ 𝑦 ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑥 ) |
| 46 | elequ1 | ⊢ ( 𝑤 = 𝑥 → ( 𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) | |
| 47 | 46 | adantl | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑥 ) → ( 𝑤 ∈ 𝑧 ↔ 𝑥 ∈ 𝑧 ) ) |
| 48 | 45 47 | albid | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑦 𝑤 ∈ 𝑧 ↔ ∀ 𝑦 𝑥 ∈ 𝑧 ) ) |
| 49 | 48 | adantlr | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑦 𝑤 ∈ 𝑧 ↔ ∀ 𝑦 𝑥 ∈ 𝑧 ) ) |
| 50 | 44 49 | imbi12d | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) ↔ ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) |
| 51 | 50 | ex | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) ↔ ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) ) |
| 52 | 11 27 51 | cbvald | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) ↔ ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) |
| 53 | 52 | adantr | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) ↔ ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) ) ) |
| 54 | elequ2 | ⊢ ( 𝑤 = 𝑥 → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 55 | 54 | adantl | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( 𝑦 ∈ 𝑤 ↔ 𝑦 ∈ 𝑥 ) ) |
| 56 | 53 55 | imbi12d | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 57 | 36 56 | albid | ⊢ ( ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) ∧ 𝑤 = 𝑥 ) → ( ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 58 | 57 | ex | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( 𝑤 = 𝑥 → ( ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) ) |
| 59 | 11 32 58 | cbvexd | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ( ∃ 𝑤 ∀ 𝑦 ( ∀ 𝑤 ( ∃ 𝑧 𝑤 ∈ 𝑦 → ∀ 𝑦 𝑤 ∈ 𝑧 ) → 𝑦 ∈ 𝑤 ) ↔ ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |
| 60 | 8 59 | mpbii | ⊢ ( ( ¬ ∀ 𝑥 𝑥 = 𝑦 ∧ ¬ ∀ 𝑥 𝑥 = 𝑧 ) → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) |
| 61 | 60 | ex | ⊢ ( ¬ ∀ 𝑥 𝑥 = 𝑦 → ( ¬ ∀ 𝑥 𝑥 = 𝑧 → ∃ 𝑥 ∀ 𝑦 ( ∀ 𝑥 ( ∃ 𝑧 𝑥 ∈ 𝑦 → ∀ 𝑦 𝑥 ∈ 𝑧 ) → 𝑦 ∈ 𝑥 ) ) ) |