This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, justified by Theorem axdistr . Proofs should normally use adddi instead. (New usage is discouraged.) (Contributed by NM, 22-Nov-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-distr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cc | ⊢ ℂ | |
| 2 | 0 1 | wcel | ⊢ 𝐴 ∈ ℂ |
| 3 | cB | ⊢ 𝐵 | |
| 4 | 3 1 | wcel | ⊢ 𝐵 ∈ ℂ |
| 5 | cC | ⊢ 𝐶 | |
| 6 | 5 1 | wcel | ⊢ 𝐶 ∈ ℂ |
| 7 | 2 4 6 | w3a | ⊢ ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) |
| 8 | cmul | ⊢ · | |
| 9 | caddc | ⊢ + | |
| 10 | 3 5 9 | co | ⊢ ( 𝐵 + 𝐶 ) |
| 11 | 0 10 8 | co | ⊢ ( 𝐴 · ( 𝐵 + 𝐶 ) ) |
| 12 | 0 3 8 | co | ⊢ ( 𝐴 · 𝐵 ) |
| 13 | 0 5 8 | co | ⊢ ( 𝐴 · 𝐶 ) |
| 14 | 12 13 9 | co | ⊢ ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) |
| 15 | 11 14 | wceq | ⊢ ( 𝐴 · ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) |
| 16 | 7 15 | wi | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 · ( 𝐵 + 𝐶 ) ) = ( ( 𝐴 · 𝐵 ) + ( 𝐴 · 𝐶 ) ) ) |