This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An arrow is contained in the hom-set corresponding to its domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | arwrcl.a | ⊢ 𝐴 = ( Arrow ‘ 𝐶 ) | |
| arwhoma.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | ||
| Assertion | arwhoma | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 ∈ ( ( doma ‘ 𝐹 ) 𝐻 ( coda ‘ 𝐹 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwrcl.a | ⊢ 𝐴 = ( Arrow ‘ 𝐶 ) | |
| 2 | arwhoma.h | ⊢ 𝐻 = ( Homa ‘ 𝐶 ) | |
| 3 | 1 2 | arwval | ⊢ 𝐴 = ∪ ran 𝐻 |
| 4 | 3 | eleq2i | ⊢ ( 𝐹 ∈ 𝐴 ↔ 𝐹 ∈ ∪ ran 𝐻 ) |
| 5 | 4 | biimpi | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 ∈ ∪ ran 𝐻 ) |
| 6 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 7 | 1 | arwrcl | ⊢ ( 𝐹 ∈ 𝐴 → 𝐶 ∈ Cat ) |
| 8 | 2 6 7 | homaf | ⊢ ( 𝐹 ∈ 𝐴 → 𝐻 : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ⟶ 𝒫 ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × V ) ) |
| 9 | ffn | ⊢ ( 𝐻 : ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ⟶ 𝒫 ( ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) × V ) → 𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) ) | |
| 10 | fnunirn | ⊢ ( 𝐻 Fn ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) → ( 𝐹 ∈ ∪ ran 𝐻 ↔ ∃ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) 𝐹 ∈ ( 𝐻 ‘ 𝑧 ) ) ) | |
| 11 | 8 9 10 | 3syl | ⊢ ( 𝐹 ∈ 𝐴 → ( 𝐹 ∈ ∪ ran 𝐻 ↔ ∃ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) 𝐹 ∈ ( 𝐻 ‘ 𝑧 ) ) ) |
| 12 | 5 11 | mpbid | ⊢ ( 𝐹 ∈ 𝐴 → ∃ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) 𝐹 ∈ ( 𝐻 ‘ 𝑧 ) ) |
| 13 | fveq2 | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) ) | |
| 14 | df-ov | ⊢ ( 𝑥 𝐻 𝑦 ) = ( 𝐻 ‘ 〈 𝑥 , 𝑦 〉 ) | |
| 15 | 13 14 | eqtr4di | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐻 ‘ 𝑧 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 16 | 15 | eleq2d | ⊢ ( 𝑧 = 〈 𝑥 , 𝑦 〉 → ( 𝐹 ∈ ( 𝐻 ‘ 𝑧 ) ↔ 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) ) ) |
| 17 | 16 | rexxp | ⊢ ( ∃ 𝑧 ∈ ( ( Base ‘ 𝐶 ) × ( Base ‘ 𝐶 ) ) 𝐹 ∈ ( 𝐻 ‘ 𝑧 ) ↔ ∃ 𝑥 ∈ ( Base ‘ 𝐶 ) ∃ 𝑦 ∈ ( Base ‘ 𝐶 ) 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 18 | 12 17 | sylib | ⊢ ( 𝐹 ∈ 𝐴 → ∃ 𝑥 ∈ ( Base ‘ 𝐶 ) ∃ 𝑦 ∈ ( Base ‘ 𝐶 ) 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) ) |
| 19 | id | ⊢ ( 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) → 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) ) | |
| 20 | 2 | homadm | ⊢ ( 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) → ( doma ‘ 𝐹 ) = 𝑥 ) |
| 21 | 2 | homacd | ⊢ ( 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) → ( coda ‘ 𝐹 ) = 𝑦 ) |
| 22 | 20 21 | oveq12d | ⊢ ( 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) → ( ( doma ‘ 𝐹 ) 𝐻 ( coda ‘ 𝐹 ) ) = ( 𝑥 𝐻 𝑦 ) ) |
| 23 | 19 22 | eleqtrrd | ⊢ ( 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) → 𝐹 ∈ ( ( doma ‘ 𝐹 ) 𝐻 ( coda ‘ 𝐹 ) ) ) |
| 24 | 23 | rexlimivw | ⊢ ( ∃ 𝑦 ∈ ( Base ‘ 𝐶 ) 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) → 𝐹 ∈ ( ( doma ‘ 𝐹 ) 𝐻 ( coda ‘ 𝐹 ) ) ) |
| 25 | 24 | rexlimivw | ⊢ ( ∃ 𝑥 ∈ ( Base ‘ 𝐶 ) ∃ 𝑦 ∈ ( Base ‘ 𝐶 ) 𝐹 ∈ ( 𝑥 𝐻 𝑦 ) → 𝐹 ∈ ( ( doma ‘ 𝐹 ) 𝐻 ( coda ‘ 𝐹 ) ) ) |
| 26 | 18 25 | syl | ⊢ ( 𝐹 ∈ 𝐴 → 𝐹 ∈ ( ( doma ‘ 𝐹 ) 𝐻 ( coda ‘ 𝐹 ) ) ) |