This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first component of an arrow is the ordered pair of domain and codomain. (Contributed by Mario Carneiro, 11-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | arwrcl.a | ⊢ 𝐴 = ( Arrow ‘ 𝐶 ) | |
| Assertion | arwrcl | ⊢ ( 𝐹 ∈ 𝐴 → 𝐶 ∈ Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | arwrcl.a | ⊢ 𝐴 = ( Arrow ‘ 𝐶 ) | |
| 2 | df-arw | ⊢ Arrow = ( 𝑐 ∈ Cat ↦ ∪ ran ( Homa ‘ 𝑐 ) ) | |
| 3 | 2 | dmmptss | ⊢ dom Arrow ⊆ Cat |
| 4 | elfvdm | ⊢ ( 𝐹 ∈ ( Arrow ‘ 𝐶 ) → 𝐶 ∈ dom Arrow ) | |
| 5 | 4 1 | eleq2s | ⊢ ( 𝐹 ∈ 𝐴 → 𝐶 ∈ dom Arrow ) |
| 6 | 3 5 | sselid | ⊢ ( 𝐹 ∈ 𝐴 → 𝐶 ∈ Cat ) |